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ABSTRACT

DEVELOPMENT OF THE TOLTEC DATA REDUCTION
PIPELINE AND THE APPLICATION OF

HIERARCHICAL BAYESIAN INFERENCE TO TOLTEC
DATA

MAY 2024

MICHAEL. J. MCCRACKAN

B.Sc., UNIVERSITY OF NEW MEXICO

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Grant. W. Wilson

TolTEC is a millimeter-wavelength imaging polarimeter now installed on the 50-

meter Large Millimeter Telescope that simultaneously maps the sky using 7718 dual-

polarization Lumped Element Kinetic Inductance Detectors distributed among three

monochromatic arrays, centered at 1.1, 1.4, and 2.0 mm (273, 214, and 150 GHz). The

camera is currently in the commissioning phase and has completed two observational

runs, in June and December of 2022.

This work offers a comprehensive review of the TolTEC data reduction and map-

making pipeline Citlali (v4.0), an open-source, high-performance, and parallelized

software package written in C++. Citlali rapidly transforms the raw time-ordered

data from all categories of TolTEC data into two-dimensional maps of the sky, in ad-

dition to performing map coaddition and post-mapmaking point source filtering. The

vi



pipeline’s design philosophy, data streaming and parallelization model, timestream

reduction stages, mapmaking algorithms, and iterative mapmaking routine are de-

tailed.

Maps of sources observed during TolTEC’s 2022 commissioning, including the

radio quasar J1159+292, the Crab Nebula, and the Monoceros R2 Giant Molecular

Cloud, which were produced using Citlali, are presented. The analysis investi-

gates the flux recovery from extended sources by Citlali’s iterative mapmaker and

compares results from the built-in mapmakers to maps created with the maximum

likelihood mapmaker Minkasi.

This work also details a C++ hierarchical Bayesian MCMC software package de-

veloped for fitting dust emission SEDs in each pixel of TolTEC maps. This code inte-

grates instrumental PSF data into a forward-fitting model to maintain contributions

from higher-resolution observations within the dataset. Both modified blackbody and

physically motivated dust models using the Astrodust+PAH model of Hensley and

Draine 2023 have been implemented. Results from applying this software to simu-

lated dust SEDs, as well as to WISE, Spitzer, and Herschel observations of the face-on

spiral galaxy NGC 3938, are presented.
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INTRODUCTION

The sky at millimeter wavelengths is host to a wide diversity of astrophysical

sources that exist across much of the lifetime of the Universe and are characterized by

an enormous range in physical scales and luminosities. The interplay between the pho-

tons of the Cosmic Microwave Background (CMB) and the hot gas between galaxies

within massive clusters through the Sunyaev–Zeldovich (SZ; Sunyaev and Zeldovich

1970; Sunyaev and Zeldovich 1972) effect, spectral emission lines from molecules deep

within cold, dense star-forming clouds and protoplanetary disks, synchrotron radia-

tion from supernovae remnants, and the thermal emission from interstellar dust all fill

the sky with millimeter wavelength photons that offer a unique, yet complementary

window with which to explore fundamental questions about physics of the Cosmos.

Fueled by the parallel developments of new detector technologies that have en-

abled the assembly of larger, multi-color detector arrays and the construction of larger

single-dish telescopes, interferometer arrays, and airborne experiments, the field of

both ground-based and near-Earth orbit submillimeter and millimeter astronomy has

been at the center of an explosion in new studies and scientific results in previously

poorly explored parameter spaces over the decades. First generation cameras like

SCUBA (Holland et al. 1999), LABOCA (Siringo et al. 2009), AzTEC (Wilson et al.

2008) and NIKA (Monfardini et al. 2010) mounted on 15–50-meter telescopes such

as the JCMT, IRAM, and the LMT laid much of the groundwork for recent second-

generation instruments like SCUBA-2 (Holland et al. 2013) and NIKA2 (Adam et al.

2018) which can now observe the sky at resolutions near 10′′ with much higher sensi-

tivities. This has opened new windows into the small-scale physics within the Milky

Way and in nearby galaxies, while simultaneously allowing for studies of faint sources
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at high redshifts in a fraction of the time of what was previously possible. These

cameras are complemented by large field-of-view (FOV) experiments like the Ata-

cama Cosmology Telescope (ACT; Thornton et al. 2016), the South Pole Telescope

(SPT; Carlstrom et al. 2011), and CCAT-Prime (Chapman et al. 2022) for inves-

tigations into the Large-Scale structure (LSS) of the Universe and the polarization

features of the CMB. Upcoming and in-development projects like the Advanced Si-

mons Observatory (SO; Galitzki et al. 2018) and CMB-S4 (Carlstrom et al. 2019) use

detector arrays an order of magnitude larger than current instruments and provide

sufficient sensitivity to place strong constraints on CMB and fundamental cosmo-

logical physics. Airborne instruments like BLASTPol (Pascale and Pascale 2013),

SPIDER (Crill et al. 2008), and SOFIA (Helton and Team 2013) observe the signa-

tures of star-formation, magnetic fields, and cosmological B-mode polarizations from

high altitudes above much of the Earth’s intervening atmosphere which significantly

impacts ground-based millimeter observing. Finally, interferometers, particularly the

Atacama Large Millimeter/submillimeter Array (ALMA), offer the opportunity to

investigate such targets as dust and molecular emission lines within protoplanetary

disks and distant galaxies with angular scales of less than 1 arcsecond.

The new ground gained at millimeter wavelengths joins with earlier and ongoing

transformational advancements in the fields of infrared and submillimeter astron-

omy that was propelled forwards by the launch of space-based telescopes, namely

Spitzer Space Telescope (Werner et al. 2004), WISE (Wright et al. 2010), AKARI

(Murakami et al. 2007), the Herschel Space Observatory (Pilbratt et al. 2010), and

Planck (Clements 2017). The James Webb Space Telescope (JWST; Clements 2017)

joins this pantheon of space telescopes and offers superior sensitivity and resolution

to near-infrared (NIR) and mid-infrared (MIR) wavelengths compared to Spitzer.

These instruments have conducted large surveys of galactic and extragalactic sources

over their lifetimes thus building homogeneous photometric and spectroscopic mul-
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tiwavelength datasets that can be combined with millimeter observations to place

strong, statistically significant constraints on astrophysical phenomenon from just a

few microns up to 10 millimeters.

Out of the vast selection of sources that populate the millimeter sky, dust repre-

sents a particularly important component and is a primary target of submillimeter

and millimeter instruments owing to the ubiquity of its presence in galactic and extra-

galactic environments and due to its profound effect on galaxies from the microscopic

to the macroscopic scales. Dust is a complex building block of the interstellar medium

(ISM), being characterized by a range of dust grain sizes, shapes, and compositions,

each of which perturbs the optical properties of the global dust population. It is

a key player in the star-formation cycle alongside the gas content and stellar pop-

ulations and is therefore a fundamental driver in galaxy evolution over cosmic time

(Galliano et al. 2018). The presence of dust does not only affect the physical nature

of galaxies and their interstellar media, but it also significantly impacts our ability to

probe their properties through observations as it reshapes the spectral energy distri-

butions (SEDs) of galaxies (Draine 2003; Galliano 2022). It simultaneously obscures

processes from direct investigation while also providing new, indirect tracers of their

occurrence. Therefore, in order to measure key parameters that describe the structure

and evolution of galaxies like star-formation rates (SFR), stellar masses, metallicities,

and morphologies, in addition to enable the exploration of the relationships among

them, a comprehensive understanding of dust content in galaxies is required. While

shorter wavelengths are most affected by dust extinction, the emission features of

dust lie squarely within the NIR to millimeter range. The Milky Way dust content

has been thoroughly explored and is used as the basis for the construction of models

for extragalactic studies. The mass, distribution, and spectral shape of dust within a

diverse array of galaxy types, including nearby star-forming spirals, local dwarfs, as

well as in Luminous Infrared Galaxies (LIRGs) and Ultraluminous Infrared Galaxies
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(ULIRGs) have been extensively explored through large surveys conducted with Her-

schel and Spitzer and smaller scale studies with ground-based telescopes (Galliano

et al. 2018; Galliano 2022).

These studies have revealed the considerable diversity in dust physics and the

environments it is found in, even when only considering local galaxies. In particular,

the dust content within nearby dwarf galaxies presents an array of unique and per-

plexing traits not found within the Milky Way or similar massive, nearby star-forming

spirals. The dwarf galaxy classification is a moniker belonging to a varied assortment

of galaxy sub-types, though they share the common features of having low stellar

masses and luminosities, small physical sizes, and lacking much in the way of heavier

elements or metals in their ISMs. Sub-types include dwarf spheroids, ellipticals, ir-

regulars, Blue Compact Dwarfs (BCD) (Sargent and Searle 1970), ultrafaint dwarfs

(Simon 2019a), and ultra-compact dwarfs (Hilker et al. 1999; Drinkwater et al. 2000).

Dwarf spheroids are the most common type, as well as the smallest and faintest of

the dwarfs, with stellar masses less than 108 M⊙ and diameters of less than 0.5 kpc

(Mateo 1998). They exhibit old stellar populations of 10-12 Gyr and have no ongo-

ing star-formation activity within the last 1-2 Gyrs (Tolstoy et al. 2009). Ultra-faint

dwarfs represent an extension of the dwarf spheroid classification to lower luminosities

of less than MV = −7.7 or 105 L⊙ (Simon 2019b). Dwarf ellipticals are the larger and

more massive counterparts of the dwarf spheroids, with diameters less than 10 kpc

while similarly showing no evidence of ongoing star formation. Dwarf irregulars, like

the more general irregular galaxy classification, possess no well-defined shape, con-

tain substantial amounts of gas, especially in the neutral HI phase, and have ongoing

star-formation. Many dwarf irregulars and BCDs exhibit signs of undergoing intense

periods of starburst activity (Tolstoy et al. 2009; Henkel et al. 2022).

The amount of dust relative to gas in any of the dwarf sub-categories can be more

than an order of magnitude lower than what one would naively expect based on the
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linear trend with metallicity for massive galaxies (Rémy-Ruyer et al. 2014; Galliano

et al. 2021). Their dust is typically hotter and has little in the way of the emission

features that are more commonly found at NIR to MIR wavelengths in star-forming

spirals (Galliano et al. 2005; Rémy-Ruyer et al. 2013). Finally, a significant fraction

of SEDs of dwarf galaxies show an enhancement in emission at submillimeter and mil-

limeter wavelengths that is not commonly mirrored by massive galaxies (Rémy-Ruyer

et al. 2013; Gordon et al. 2014; Galliano et al. 2011; Galliano 2022). These distinc-

tions point to unique dust grain production, growth, and destruction mechanisms

within dwarf galaxy ISMs.

The conditions in the ISMs of dwarf galaxies are thought to be like those of the

first galaxies in the Universe (Henkel et al. 2022). Under the theory of hierarchical

structure formation within the ΛCDM (White and Rees 1978; Frenk et al. 1988) cos-

mological framework, primordial galaxies should form within the smallest dark matter

halos and build mass to become the massive galaxies we see today through mergers

over their lifetimes. Processes such as galaxy downsizing complicate our interpreta-

tion of galaxy evolution, with stellar mass measurements out to z=4 (Pérez-González

et al. 2008) and star-formation time-scale estimates finding that massive early type

galaxies can form earlier and have older stellar populations (Thomas et al. 2010)

relative to their smaller counterparts (Silk et al. 2014). However, downsizing does

not necessarily contradict a bottom-up formation scenario. It is likely a consequence

of massive halos’ inability to retain cold gas (Cattaneo et al. 2008), which can be

attributed to feedback mechanisms and interactions within dense environments.

The earliest galaxies would not have had sufficient generations of stars to en-

rich their ISMs with heavier elements. The chemical abundances of elements such

as deuterium, helium, and lithium will have undergone little evolution from the ini-

tial abundances set by Big Bang nucleosynthesis (Henkel et al. 2022). Nearby dwarf

galaxies can be utilized as analogs to these faint, and difficult-to-observe high redshift
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systems, where the interactions between the dust, gas, and stellar content inside of an

extreme environment can be probed down to the scale of individual star-forming com-

plexes. Indeed, blue compact dwarfs, despite undergoing repeated strong starburst

phases, are old galaxies with metal abundances preserved from the early universe and

can be used to explore how star formation may have occurred in early systems (Cairós

et al. 2010).

Acquiring accurate estimates of the total dust masses and improving constraints

on the nature of the anomalous excess emission from dust constitute strong moti-

vations for carrying out observations of dwarf galaxies with high-resolution ground-

based millimeter cameras, which can map the distributions of excess emission and

connect them to the corresponding distributions of key dust parameters within dwarf

galaxy ISMs. With strong constraints on the dust SED shape from combinations

of space-based submillimeter and ground-based millimeter telescopes, differing dust

populations and characteristics can be introduced into SED models to derive a phys-

ical interpretation for the unique features of dwarf dust emission. In practice, this

proves to be challenging owing to the faint nature of dwarfs across FIR and millimeter

bands which makes detections at high significance with earlier millimeter instruments

difficult. This necessitated observations of only the most nearby sources, such as the

Magellanic Clouds and Local Group dwarfs, or very bright, starburst dwarfs in order

to avoid prohibitively long integration times (Simon 2019a). This selection restricts

the range of conditions that can be explored, with the dust properties of very metal

poor dwarfs with little active star-formation being underexplored. As a result, dwarf

galaxy dust content remains a poorly sampled parameter space compared to that

of star-forming galaxies and represents a unique opportunity for novel science results

with current generation, high resolution, and high sensitivity ground-based millimeter

instruments.
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The TolTEC camera (Bryan et al. 2018; Wilson et al. 2020) is a millimeter imaging

camera that maps the sky at 1.1, 1.4, and 2.0 mm (273, 214, 150 GHz) simultane-

ously using 7718 polarization sensitive Kinetic Inductance Detectors (KIDs; Day et

al. 2003; Doyle et al. 2008). TolTEC is a facility instrument currently undergoing

commissioning on the 50-m Large Millimeter Telescope (LMT; Hughes et al. 2020)

which provides the camera with a 4’ diameter field-of-view and resolutions of 5-10′′

across its 3 bands. Observations with TolTEC aim to tackle many of the key areas of

interest in the field of millimeter astronomy, including making measurements the SZ

effect, estimating the polarized emission from star-forming filaments, detecting pro-

tostellar cores in molecular clouds, and carrying out spatially resolved studies of the

dust content in local galaxies. Furthermore, TolTEC, in conjunction with the LMT,

represents an optimal system with which to address the difficulties in investigating

nearby dwarf dust content. Observations of bright, nearby, well-studied starburst

dwarfs such as NGC 4449 and IC 10 are currently planned and TolTEC is expected

to carry out observations of tens of local dwarfs over its lifetime.
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THIS THESIS

This thesis details my contributions to the construction, installation, and commis-

sioning of the TolTEC millimeter camera and to the TolTEC project as a whole. My

primary role within the TolTEC collaboration is as a member of the software team,

where I am the lead and primary author of the TolTEC data reduction and map-

making pipeline, Citlali. The design, development, deployment, and integration

of the pipeline into the broader TolTEC software architecture, and the verification

of Citlali with raw and simulated TolTEC data constitute the central pillar of my

dissertation work. I have also developed a hierarchical Bayesian SED fitting package

intended primarily to be used for fitting dust emission within planned observations

of nearby star-forming and dwarf galaxies with TolTEC.

Chapter 1 describes the scientific motivation for my work by providing an overview

of the properties of the dust content in nearby galaxies, two frequently used dust mod-

eling prescriptions, and a description of the unique qualities of the dust within local

low-metallicity dwarf galaxies. An introduction to the TolTEC camera, including its

design, setup, and observing strategies, as well as the Large Millimeter Telescope and

supporting data reduction hardware is the subject of Chapter 2 to provide context

for the requirements of the camera’s data reduction pipeline. Citlali is described in

Chapter 3, where the code structure, core algorithms, integration with other mapmak-

ers, and performance are outlined. Chapter 4 presents preliminary results from the

reduction of TolTEC commissioning observation data with Citlali and other map-

making pipelines. The hierarchical Bayesian SED fitting software code I developed is

then detailed in Chapter 5. Results from the fitting of simulated dust SEDs to modi-

fied blackbody and physically motivated dust models are presented. Furthermore, fits
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to integrated aperture photometry and individual pixels from the Spitzer and Her-

schel data of the nearby face-on spiral galaxy NGC 3938 are presented. Conclusions

are then given in Chapter 6.
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CHAPTER 1

DUST CONTENT IN THE LOCAL UNIVERSE

Dust is a key building block of galaxies and plays an important role in their

evolution over cosmic time. The interstellar medium exists as a complex mixture of

both dust and gas in its molecular, atomic, and ionized phases and its interactions

with the stellar populations within galaxies results in the star-formation cycle that

drives the dynamical, morphological, and chemical transformation of galaxies in the

absence of major disruptive events like interactions and mergers. Within nearby

galaxies, the mass abundance of dust is dwarfed by that of the gas content, with only

about 1% of the ISM mass being accounted for by dust (Bohlin et al. 1978; Draine

et al. 2007; Sandstrom et al. 2012; De Vis et al. 2019). For local dwarf galaxies,

the mass fraction can be several orders of magnitude lower (Rémy-Ruyer et al. 2014;

De Vis et al. 2017; Galliano et al. 2021). Despite its relative scarcity, the presence

of dust cannot be overlooked due to its effects on the physical makeup of galaxies

and their radiative properties. It is not an overstatement to say that without dust,

the Universe and the galaxies that populate it would be nigh unrecognizable to their

present forms.

The dust content in galaxies is an assembly of individual dust grains that form and

grow from the heavier elements that flood the ISM during the late-stage processes in

the lifecycles of stars (Draine 2003; Galliano 2022). Dust grains are characterized by

a considerable complexity in their properties which translates to a similar complexity

in their emission features, as well as in their absorption and scattering of radiation

from other sources. Dust absorbs and scatters stellar radiation emitted at UV and
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optical parts of the electromagnetic spectrum and re-radiates it as thermal emission

and spectral lines between the NIR to millimeter windows, thus significantly reshaping

the SEDs of galaxies (Driver et al. 2016). Figure 1.1 shows several examples of SEDs

for different galaxy types, highlighting the impact of the dust thermal emission as well

as the dust spectral features at NIR and MIR wavelengths. The relative contribution

of the dust thermal emission to the bolometric luminosity of the galaxy increases from

bottom to top. Dust is therefore a contributing factor to nearly every measurement

that we can make of galaxies. Nearly 30% of the stellar luminosity from typical

star-forming galaxies is re-radiated as dust thermal emission (Draine 2003; Galliano

2022), with this number climbing to 99% for ULIRGs at higher redshifts (Bianchi

et al. 2018). As dust is co-spatial with the gas content in the ISM, dense, cold

molecular clouds can be deeply embedded within dense, dusty regions that obscure

direct emission from the protostellar objects and newborn stars within them.

Figure 1.1. Figure reproduced from Lagache et al. 2005. Galaxy SEDs from several
different galaxy types, including a local star-forming spiral, an early-type galaxy, a
starburst system, and a ULIRG, are plotted.
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While dust obscuration and reprocessing may be a considerable nuisance at times,

it does offer a direct window through which to investigate the physics of dust grains

themselves and the physical conditions of the environment they populate. The wave-

length dependence of a dust grain’s re-radiation of absorbed photons as thermal

radiation is influenced by both the physical environment of the ISM that the dust

grain inhabits and the structure of the grain itself. Grains are heated by the pho-

tons of the interstellar radiation field (ISRF) and will emit at different wavelengths

depending on the strength of the local and diffuse radiation field components. Each

grain can be described in terms of an absorption cross-section which is a function of

the grain size and its dielectric constant. As a result, the peak and spectral shape of

dust thermal emission SEDs are signatures of local ISM temperature and the types

of grains within the emitting population (Hensley and Draine 2023). Dust spectro-

scopic features at MIR wavelengths arise from electronic, vibrational, and rotational

transitions that depend on the chemical makeup and structure of the grain (Draine

2003). Using observational constraints on the wavelength-dependent absorption and

scattering by dust, measurements of dust analogs in laboratory environments, and

modeling of grain size distributions, shapes, and assembly, a model of the interstellar

dust population in differing environments can be constructed and used to extract

information about the dust content from galaxy SEDs.

This of course is no simple nor straightforward feat. Complications arise from the

fact that the actual three-dimensional structure of the ISM is difficult to ascertain

from the two-dimensional projections provided by observations. With the exception

of the very diffuse ISM, different lines of sight are likely to be characterized by a

mixture of temperatures and dust grain species that contribute to an average SED

described by effective dust and ISM properties rather than those of any single actual

component. Galaxies are also viewed at different inclination angles which can impact

the recovery of key parameters like metallicity due to differences in dust attenuation.
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Three-dimensional radiative transfer (RT) methods provide an avenue to explore the

dust emission and extinction and the effects of projection and inclination for simu-

lated 3D distributions of mixtures of dust grain types, though accurately modeling

complex structures is difficult (Popescu et al. 2000; Galliano 2022). In addition, while

laboratory-based dust analogs are used to infer the compositions of interstellar grains,

exact recreations of the conditions in which the latter forms and grows is challeng-

ing, if not impossible. Therefore, while general characteristics may be deduced, their

chemical and structural makeup cannot be fully determined from analogs alone and

they must be used in conjunction with independent observational constraints.

1.0.1 What are Dust Grains Made Of?

Dust grains are solid structures that are assembled from many of the most common

metals found within the ISM, namely carbon (C), oxygen (O), magnesium (Mg),

silicon (Si), and iron (Fe) (Siebenmorgen et al. 2014). The presence of these elements

within dust grains in the Milky Way (MW) can be inferred through comparisons of

solar photosphere elemental abundances with those of the gas in the ISM (Asplund

et al. 2009), through absorption spectroscopy (Jenkins 2009), and dust polarization

spectra (Siebenmorgen et al. 2014). These studies find, with exceptions, that many

dust grain candidate elements are less abundant or depleted in the ISM, particularly

in dense ISM regions where grain growth from raw materials in the gas is expected

to be more efficient. Our understanding of the chemical composition of dust grains

is further informed by the spectroscopic features exhibited by different dust grain

species. The 2175 Å bump, prominent emission lines at 9.4 µm and 18 µm (Woolf and

Ney 1969; Breemen et al. 2011), the 3.4 µm and 6.85 µm absorption features (Tielens

et al. 1996; Chiar et al. 2000; Hensley and Draine 2021), and diffuse interstellar

bands (Herbig 1995) have each been used to constrain dust candidates. Presolar
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grains from meteorites also provide a way to directly probe the dust content in the

local ISM (Draine 2003; Nittler and Ciesla 2016; Hensley and Draine 2023).

Of the many candidates, the most abundant grain type is thought to be in the

form of silicates – anions containing Si and O – bonded with either Mg or Fe into

tetrahedrons. They occupy about 2/3 of the dust mass in local galaxy ISMs (Draine

2003; Galliano 2022) and assemble into amorphous structures rather than crystalline

arrangements (Do-Duy et al. 2020). The remaining mass in dust comes from car-

bonaceous grains, where carbon atoms bond with other carbons and hydrogen into a

variety of structures including graphite sheets, hydrogenated amorphous carbons, and

polycyclic aromatic hydrocarbons (PAH) aromatic rings. The size distributions of sil-

icate and carbonaceous grains can be constrained by dust extinction curves (Mathis

et al. 1977; Siebenmorgen et al. 2014) and by fitting the polarization spectrum (Das

et al. 2010) and are found to vary between 0.3 nm and 0.3 µm in size. Within the

densest regions of the ISM, grains can be enshrouded in molecular mantles of frozen

CO, CO2, and H2O (Boogert et al. 2015). These contribute additional absorption

bands at MIR wavelengths within these regions.

1.0.2 Dust Grain Formation, Growth, and Destruction

The raw metals for dust are ejected into the interstellar medium through the stellar

outflows of Asymptotic Giant Branch (AGB) stars (Sargent et al. 2010; Micha lowski

2015) and from core-collapse supernovae (SNII; Bevan et al. 2017; De Looze et al.

2017). Main sequence stars with M⊙ < 8 M⊙ will undergo the AGB phase which is

characterized by thermal pulses and mass loss that can eject heavier core elements

through stellar winds to eventually join the ISM (Dell’Agli et al. 2015). Models pre-

dict that approximately 10 - 40% of heavier elements ejected will condense into dust

(Morgan and Edmunds 2003; Ventura et al. 2012; Schneider et al. 2014). The addi-

tional contribution from cooling gas emitted from SNIIs is relatively unconstrained,
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with predictions ranging between 10−3 - 1 M⊙ (Todini and Ferrara 2001; Ercolano

et al. 2007; Bianchi and Schneider 2007; Bocchio et al. 2016; Marassi et al. 2019) and

actual measurements from Herschel finding values between 0.03 − 1.1M⊙ (Barlow

et al. 2010; Arendt et al. 2014; De Looze et al. 2017; Bevan et al. 2017; Priestley

et al. 2019; Gomez et al. 2012; Temim and Dwek 2013; De Looze et al. 2019). Even

accounting for the uncertainties in the SNII dust production rate, dust grains must

continue to grow throughout the ISM to account for the presence of large quantities

of dust at high redshifts (Bertoldi et al. 2003; Priddey et al. 2003; Rowlands et al.

2014; Watson et al. 2015; Micha lowski 2015). Furthermore, within dense Milky Way

ISM regions, FIR dust cross sections are larger, and MIR emission features weaken,

indicating a bias favoring larger grain sizes for such environments (Stepnik et al. 2003;

Köhler et al. 2015; Galliano et al. 2018). Dust grains can amalgamate together and

accrete further mass from the metals and molecules in the gas, thus depleting it.

Figure 1.2. Figure reproduced from Demyk 2011 demonstrating the stages and
timescales of the star formation cycle and dust evolution in the ISM.
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The lifetime of a dust grain within the various phases of the ISM is uncertain,

with estimates between 1 − 20 × 108 years (Barlow 1978; Watson et al. 2015; Dwek

and Scalo 1980; Bocchio et al. 2014; Zhukovska et al. 2016). Dust grains can be

broken apart or destroyed through the reverse shocks of the same SNII events that

produced them (Bocchio et al. 2014), as well as by thermal sputtering or collisions with

gas, other grains, and cosmic rays, and photodesorption from high energy photons

(Galliano et al. 2018). Theoretical predictions expect silicate grains to have the

highest survivability and carbonaceous grains, particularly amorphous hydrogenate

carbons, to be more easily destroyed within SNII shocks (Bocchio et al. 2014; Slavin

et al. 2015).

1.0.3 Dust and the Star Formation Cycle

Dust plays a synergistic role with the gas content of the ISM that directly con-

tributes to the formation of new stars within molecular clouds (Kennicutt 1998; Ken-

nicutt et al. 2009) through the star formation cycle (Figure 1.2). Dust extinction of

high energy UV and X-ray photons as well as cosmic rays prevents them from dissoci-

ating molecular hydrogen (H2), the fuel for star-formation (Li and Greenberg 2003).

The surfaces of dust grains also operate as an energetically favorable catalyzing site

where atomic hydrogen atoms collide, lose kinetic energy, and more readily coalesce

into molecular hydrogen (Gould and Salpeter 1963; Wolfire et al. 1995; Le Bourlot

et al. 2012; Bron et al. 2014; Wakelam et al. 2017) before being liberated back into

the gas, thus increasing the efficiency of H2 formation. Furthermore, the re-emission

of absorbed radiation by dust grains as thermal radiation offers a cooling channel for

molecular clouds to radiate away gravitational energy as they collapse under their

own gravitational pull to form a protostellar object (Klessen and Glover 2016).
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1.0.4 Dust SED Modeling

Numerous models and fitting approaches have been developed to fit the dust

continuum and spectral emission across NIR to millimeter wavelengths. Each incor-

porates its own assumptions and simplifications, and they vary considerably in terms

of model complexity and computational requirements. The simplest strategy is to

fit only the SED from dust thermal and spectral emission itself either directly to a

model parametrized in terms of the dust mass, spectral shape, and the ISM con-

ditions or to scale an existing SED template derived from separate observations to

fit the observations. These methods therefore only require observations of the dust

emission and can be used when few observations are available. Other approaches use

the principle of energy balance between the stellar and dust components to fit the

entire panchromatic SED across UV and millimeter wavelengths. Fitting codes such

as CIGALE (Boquien et al. 2019), MAGPHYS (Cunha et al. 2008), and Prospector

(Leja et al. 2017) have become popular when fitting with constraints across UV to IR

wavelengths and employ the Bayesian statistical framework to derive full posterior

distributions for key galaxy parameters like stellar masses, SFRs, dust masses and

can incorporate realistic grain models.

A full model of the propagation of radiation through a simulated medium of

dust can be carried out with radiative transfer fitting and compared to observations

(Popescu et al. 2011; Nersesian et al. 2020; Galliano 2022). Heterogeneous mixtures

of dust grain compositions and non-local heating from the diffuse ISRF can be fully

incorporated. However, while self-consistent solutions of complex media can be de-

rived through radiative transfer modeling, it is a highly computationally expensive

approach, particularly for large samples or spatially resolved studies seeking to fit on

a per-pixel basis. Furthermore, it is difficult to constrain the actual three-dimensional

structure of the ISM through observations owing to the two-dimensional projections

of observations and inclination effects.
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Below, I detail the two strategies implemented in the SED fitting code described

in Chapter 4, which are the modified blackbody model and the physically motivated

dust models.

1.0.4.1 Modified Blackbody

The modified blackbody (MBB) or graybody model (Hildebrand 1983) is the most

utilized model for fitting the dust emission at FIR wavelengths. It assumes that the

dust grains are an isothermal population in equilibrium with the ISM environment

and is characterized by a single temperature such that the flux density can be written

as

Iν = (1− e−τν )×Bν(T ). (1.1)

Here, τν is the optical depth at frequency ν and Bν(T ) is the Planck function for

the dust temperature T . The dust is assumed to be optically thin, such that Equation

1.1 can be reduced to

Iν = τν ×Bν(T ), (1.2)

owing to the fact that τν ≪ 1. The optical depth τν can be expanded in terms of the

dust surface mass density Σd, and the opacity κν , giving

τν = κν × Σdust. (1.3)

The MBB model approximates the opacity as the power-law

κν = κ0 ×
(

ν

ν0

)β

, (1.4)

where κ0 is the reference opacity at frequency ν0 and β is the power law spectral

index. The resulting expression for flux density becomes
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Figure 1.3. Example SEDs for modified blackbodies. Left: SEDs derived from
varying the dust temperature between 10 K and 60 K, while keeping Σdust and β
constant. Right: The same, but varying β between 1.0 and 2.5 while keeping the
other parameters constant.

Iν = κ0

(
ν

ν0

)β

ΣdustBν(T ). (1.5)

The free parameters for the MBB model are therefore given by Σdust, T , and β. These

effect the overall scale of the SED, the location of the peak, and the slope at FIR

wavelengths and beyond respectively. Figure 1.3 illustrates the effect of varying the

dust temperature and emissivity index β for a range of values.

The simplicity of this approach introduces a few drawbacks. Dust grains at MIR

wavelengths are stochastically heated and not in thermal equilibrium with the ISM.

They therefore cannot be fit effectively with MBB models. The assumption of a

simple power law for the dependence on wavelength for FIR opacity is not entirely

supported by laboratory analogs, which have been found to demonstrate more com-

plex behaviors, and the choice of the reference opacity κ0 can affect the recovered

dust mass as they are correlated (Galliano 2022). Furthermore, the ISM along a line-

of-sight and within a telescope beam is likely a superposition of multiple temperature

components and dust grain populations, such that the fitted T and β will represent

an average value only and will not map to the actual physical values for any single
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ISM component. Consequently, it is challenging to constrain grain compositions with

MBB models alone.

Another complication is that T and β are mathematically anti-correlated in the

MBB models (Shetty et al. 2009b; Shetty et al. 2009a; Kelly et al. 2012; Galliano

2018; Tang et al. 2021; Galliano 2022) such that an unphysical inverse relationship

can be introduced between them when performing least-squares or non-hierarchical

Bayesian fitting. This anti-correlation can compound on spurious correlations from

statistical uncertainties and correlated calibration errors across instruments to obscure

or exaggerate any potential intrinsic physically meaningful correlations between T and

β.

One method to avoid the impact of the T -β anti-correlation is to fix one param-

eter and only fit the other and Σdust. The emissivity is usually fixed owing to the

constraints on silicate and graphite grains from laboratory analogs and the greater

variation in dust temperatures across the different ISM phases. An estimate of β

can be determined from observational data by taking the flux ratio between two flux

bands in the Rayleigh-Jeans limit of the SED which cancels out the dust mass and

opacity leaving

I(ν1)

I(ν2)
=

(
ν1
ν2

)β

× Bν,1(T )

Bν,2(T )
. (1.6)

In this way, β variations within different pixels can still be explored while fixing

β. Fitting with a free β can produce underestimates of the dust mass relative to

fixed MBB (Bianchi 2013; Rémy-Ruyer et al. 2013) and morphological dependent

differences from other modeling approaches (Galliano et al. 2021). Fixing β also

introduces dust mass underestimates and may not be realistic if the grain composition

varies (Galliano 2022).

A more statistically rigorous approach to improving MBB fit results is to incor-

porate the parameter degeneracies into the model itself, which can be accomplished
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through hierarchical or multi-level Bayesian fitting (Kelly et al. 2012; Galliano 2018;

Lamperti et al. 2019; Galliano 2022). A description and a particular implementation

of hierarchical Bayesian modeling (Gelman and Hill 2007) to MBB fits is given in

more detail in Chapter 5. In brief, information about the distributions and relation-

ships between model parameters is incorporated into the model through Bayesian

priors and is determined from the data itself instead of being built from theoretical

predictions or separate observational constraints. This is a powerful technique for

handling errors and correlations introduced throughout all stages of data acquisition

and analysis. It has been shown to accurately recover intrinsic correlations between

T and β in MBB fits to simulated SEDs (Kelly et al. 2012; Galliano 2018; Lam-

perti et al. 2019; Galliano 2022) and reduce uncertainties in the recovered probability

distributions.

1.0.4.2 Physically Motivated Dust Models

Fitting with physically motivated dust models has two major advantages over

MBB model fits in that the physical models can incorporate both realistic dust grain

emissivities and the mixing of different physical conditions or temperature compo-

nents within the ISM. In this approach, the dust is modeled as being heated by a

distribution describing the contributions from the local and diffuse ISRF. The dif-

ferential dust mass dMdust is heated by a range of ISRF values dU and can be well-

described in terms of a power law (Dale et al. 2001) with a power-law index alpha in

the form

1

Mdust

dM

dU
∝ U−α, (1.7)

where Mdust is the total dust mass, U is the value of the ISRF normalized by the

mean value of the local ISRF in the Milky Way of 2.2 × 10−5 W m−2 (Mathis et al.

1983). The proportionality constant is expressed as
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N =


(1−α)

(U−+U∆)1−α−(U−)1−α if α > 1

1
ln(U−+U∆)−ln(U−)

if α = 1,

(1.8)

with U− being the lower limit on the ISRF and U∆ the range of ISRF values that are

heating the ISM such that U+ = U− +U∆. The simple power law formalism has been

demonstrated to hold even for complex, clumpy ISM distributions in 3D radiative

transfer simulations (Galliano 2022), though it is not the only parametrization with

others being developed given different observational constraints (Draine and Li 2007).

The mean value of the ISRF heating the dust can be written as

⟨U⟩ =



1−α((U−+U∆)2−α−U2−α
− )

2−α((U−+U∆)1−α−U1−α
− )

if α ̸= 1 and α ̸= 2

U∆

ln(U−+U∆)−ln(U−)
if α = 1

ln(U−+U∆)−ln(U−)

U−1
− −(U−+U∆)−1 if α = 2,

(1.9)

and is a useful, physically meaningful parameter that can play a similar role to the

dust temperature of MBB models (Galliano 2018). A dust temperature can be inferred

in this formalism given U− and the emissivity β of the dust being heated through

T = T0 × U
( 1
4+β )

− , (1.10)

where T0 is the dust temperature in the solar neighborhood with a value of 18.3 K

(Aniano et al. 2012; Nersesian et al. 2019). This relies on the assumption that the

dust is heated by a Milky Way-like ISRF distribution (Mathis et al. 1983).

With Equation 1.7, the luminosity of a dust mass heated by the ISRF at a given

frequency is calculated by incorporating the monochromatic emissivities of a modeled

dust population and integrating between U− and U+ to give
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Lν =
1

Mdust

×N ×
∫ U+

U-

jν(U)× U−α dU. (1.11)

The monochromatic emissivity in Equation 1.11 can be for a single dust grain popula-

tion or a linear combination of several different types, which allows for the inclusion of

large and small silicates and graphite grains, ionized and neutral PAH molecules, and

spinning magnetized grains into a single composite population. The relative abun-

dance of each type can be adjusted by setting that type’s mass fraction; for example,

the PAH grain fraction, qPAH can be fit along with the other parameters. Many dust

models have been developed over the course of many decades and include but are

not limited to the silicate, graphite, PAH models of Zubko et al. 2004, Draine and Li

2007, and Draine et al. 2014, the THEMIS modeling framework which incorporates

grains consisting of both cores and mantles (Jones et al. 2013; Köhler et al. 2014;

Jones et al. 2017), and the Astrodust model that employs a single unified grain type

to account for recent FIR polarization constraints on grain compositions (Draine and

Hensley 2021; Hensley and Draine 2023). These models have different observational

features, including variations in their MIR and FIR slopes (Galliano 2022; Hensley

and Draine 2023) and comparisons between fitted results with multiple models can

help place bounds on fundamental dust physics. The total extinction as a function

of wavelength for several dust models is plotted in Figure 1.4.

The emissivity of a population of N different dust grain compositions being heated

by a single ISRF value takes the form of

jν =
N∑
i=1

∫
da

(
1

NH

dni

da

)
×
∫

dT

(
dP

dT

)
i,a

× Cabs,i(ν, a)×Bν(T ). (1.12)

Each grain type i is characterized by a size distribution dni/da and an absorption

cross-section Cabs,i(ν, a) that varies with the grain radius a and composition, both of
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Figure 1.4. Figure reproduced from Hensley and Draine 2023, plotting the total
extinction as a function of wavelength for a range of physical dust models. Models
include Hensley and Draine 2023 (HD23), Draine and Li 2007 (DL07), Jones et al.
2017 (THEMIS), and Guillet et al. 2018 (G18D).
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which can be estimated from laboratory analogs. Separate cross-sections are required

for unpolarized and polarized emission from grains (Hensley and Draine 2023). The

dP/dT term describes the distribution of grain temperatures and will take different

forms depending on whether the grains are in thermal equilibrium with the ISM or

not. The absorption cross-section and temperature distribution modify the idealized

blackbody thermal emission and are integrated over the range of dust temperatures

and grain sizes considered in the model.

The parameters for the physically motivated models are then Mdust, α, U−, and

U∆. Example dust SEDs that are irradiated by different values of the ISRF are shown

in Figure 1.5 with stronger ISRFs serving to shift the peak of the SED to towards

shorter wavelengths. The PAH mass fraction qPAH or the equivalent mass in small

hydrocarbons can be included if MIR bands are being fit. Contrary to MBB models,

the complexity of the physically motivated dust models makes them more computa-

tionally expensive to re-compute the dust emissivities, particularly when using Monte

Carlo Markov Chain (MCMC) fitting techniques where thousands of models may need

to be calculated. Emissivities are therefore usually pre-computed for a grid of individ-

ual or integrated values of U which can be used or interpolated across during fitting.

The physical grounding of these models makes them a powerful tool for extracting

physically meaningful information about the dust and the ISM in a way that MBB

models cannot. They can also incorporate MIR wavelength constraints that do not

meet the thermal equilibrium requirements of MBB fitting. The physically motivated

fitting approach is still susceptible to resolution effects, where different dust mixtures

cannot be distinguished if considering integrated measurements or when incorporating

lower-resolution data into fits. The model parameters, as well as underlying choices

related to the grain size distributions and the ISRF prescription, also show spuri-

ous model and noise-induced correlations mirroring the T -β anti-correlation of MBB
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models (Galliano 2018; Galliano 2022). A hierarchical Bayesian model can similarly

be used here to mitigate this effect and improve parameter recovery.

Figure 1.5. Dust SEDs showing the effect of the interstellar radiation field strength
U on the dust emission. The dust model is the Astrodust+PAH model of Hensley
and Draine 2023 and is being heated by a single value of log(U) ranging between -3
and 6.

1.0.5 Surveys of Dust Content in Nearby Galaxies

Dust is most easily studied within the Milky Way and in local galaxies where

the faintest and smallest scale structures can be explored. Galaxies in the local uni-

verse exhibit a considerable range of dust and star-formation properties and are ideal

laboratories for carrying out observations to constrain and calibrate dust models and

dust scaling relationships. Space-based instruments have thus far provided the largest

datasets of nearby galaxy dust content observations. In particular, Herschel (Pilbratt

et al. 2010) has been a fundamental driver in furthering our knowledge of the ISM

of galaxies. The broad wavelength coverage of Herschel photometry from 70-500 µm,

when combined with MIR data from Spitzer (Werner et al. 2004), provides flux mea-

26



surements across a significant portion of the dust SED, thereby allowing for more

accurate dust mass estimates and for improved constraints on the dust composition,

such as the dust grain opacity at FIR wavelengths. Along with Planck, Herschel is

sensitive to the cold dust components that are not traced by telescopes like Spitzer

and JWST, and consequently recovers a greater fraction of the total dust mass. Her-

schel ’s superior, sub-arcminute resolution compared to Infrared Astronomical Satel-

lite (IRAS; Neugebauer et al. 1984) and the Infrared Space Observatory (ISO; Kessler

et al. 1996) has enabled the investigation of the spatial variation of ISM properties

within galaxies, which can trace physical differences in the nature of the dust, gas,

and star-formation within different regions (Madden and Cormier 2019).

Surveys with Herschel include the Herschel Reference Survey, Key Insights on

Nearby Galaxies: a Far-Infrared Survey with Herschel (KINGFISH, Dale et al. 2012),

the Herschel Dwarf Galaxy Survey (DGS; Madden et al. 2013), the Herschel Inventory

of The Agents of Galaxy Evolution survey (HERITAGE, Meixner et al. 2010), and

DustPedia (Davies et al. 2017). Together these provide observations of the warm

and cold dust content of nearly 1000 nearby local galaxies out to a distance of 200

Mpc over several orders of magnitude in stellar masses 3 × 106 − 3 × 1011M⊙ and

metallicities in (Z/Z⊙ = 0.03 – 1.20). Figure 1.6 plots the distribution of stellar

masses and metallicities for the KINGFISH, DGS, and DustPedia surveys.

These datasets are well complemented by surveys and individual observations of

local galaxies with ground-based submillimeter and millimeter instruments which ex-

tend beyond Herschel ’s longest wavelength band and provide higher resolution mea-

surements compared to the 36.3′′ beamsize of the SPIRE 500 µm band. Surveys at

wavelengths of 450 µm and 850 µm include the JCMT Nearby Galaxies Survey (Wil-

son et al. 2009; Pattle et al. 2023), which observed more than 100 massive galaxies

within 25 Mpc, and the JCMT dust and gas In Nearby Galaxies Legacy Exploration

(JINGLE; Saintonge et al. 2018) survey that targeted 193 galaxies with Herschel
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Figure 1.6. Left: Histograms of the stellar mass distributions for KINGFISH, the
DGS, and DustPedia galaxies. Stellar mass measurements were acquired from Kenni-
cutt et al. 2011 for KINGFISH, Rémy-Ruyer et al. 2013 for the DGS, and Clark et al.
2018 for DustPedia. Right: Histograms of galaxies with metallicity measurements
from the same samples. Metallicities are from Kennicutt et al. 2011, Madden et al.
2013, and De Vis et al. 2019 for KINGFISH, the DGS, and DustPedia respectively.

observations at 0.01 < z < 0.02. NIKA2 (Adam et al. 2018) on the IRAM 30m

telescope is conducting the Interpreting the Millimetre EMission of Galaxies survey

(IMEGIN) to observe ∼40 local galaxies within 30 Mpc at 1.2 and 2.0 mm as well as

the Submillimeter Excess In Nearby Fairly-Extended Low-metallicity Dwarfs (SEIN-

FELD) survey to explore dust content in local dwarf galaxies. Targeted observations

of nearby dwarf galaxies have been carried out with SCUBA at 450 µm and 850 µm

(Galliano et al. 2003), LABOCA at 870 µm (Galametz et al. 2009), AzTEC at 1.1

mm (Calzetti et al. 2018), and NIKA2 (Ejlali et al. 2022; Ejlali et al. 2023). These

provide invaluable additional wavelength constraints for galaxies in the DGS.

1.0.6 Dust in Dwarf Galaxies

A notable finding from investigations into data from nearby galaxy surveys is

the discrepancy between the dust properties of dwarf galaxies and those of massive

galaxies. Galliano et al. 2021 explored the dust content within the combination of

the DustPedia sample of 800 local galaxies with the DGS survey of 48 nearby dwarf
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galaxies using a hierarchical Bayesian fitting method with the THEMIS physically

motivated dust model. As shown in Figure 1.7, they identified a strong relation-

ship between the dust-to-gas mass ratios and the metallicity with a sharp drop in

Mdust/Mgas near Z/Z⊙ = 0.4 by several orders of magnitude. This agrees with earlier

findings of Rémy-Ruyer et al. 2014 using KINGFISH, which is dominated by star-

forming spirals, and dwarf galaxies in the DGS. Chemical models can be used to

interpret this observation as an evolution in the relative importance of the primary

grain formation and growth mechanisms as a function of metallicity (Asano et al.

2013; Zhukovska 2014; De Vis et al. 2017). For the lowest metallicity systems below

Z/Z⊙ = 0.2, the timescale of grain condensation from supernovae remnants relative to

the grain growth is very small owing to the low density of the ISM making dust grain

interactions much rarer. The Mdust/Mgas ratio increases rapidly with metallicity as

the ISM grain growth efficiency grows outpacing the SNII condensation rate. Even-

tually, the destruction of grains due to SNII becomes important within the highest

metallicity region.

Using modified blackbody fits to KINGFISH and the DGS, Rémy-Ruyer et al.

2013 found the effective dust temperatures in the DGS to be systematically higher

relative to those of KINGFISH with a median temperature of 32 K compared to 23

K and are characterized by much greater scatter. This is in agreement with a host

of earlier studies (Galliano et al. 2005; Madden et al. 2013) that have demonstrated

that dwarf dust emission peaks at wavelengths shorter than the > 100-µm peak of

both regular and starburst galaxies, with some starburst and blue compact dwarfs

having peaks between 35 and 70 µm (Madden and Cormier 2019). While temperatures

derived through MBB fits are typically overestimated to that inferred from physically

motivated dust models, thereby leading to an underestimate in the total dust mass,

there is a physical expectation of higher temperatures owing to the lack of dust

shielding contributing to a harder ISRF. Rémy-Ruyer et al. 2015 subsequently fit the
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Figure 1.7. Figure reproduced from Galliano 2022. The dust-to-gas mass ratio
(dustiness) versus metallicity for a subset of galaxies in the DustPedia sample. Ellipses
represent uncertainties from the model fits. Contours are from the dust evolution
model in Galliano et al. 2021.
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dust SEDs of KINGFISH and DGS galaxies to the dust model of Galliano et al. 2011

and identified a similar difference in temperatures (Figure 1.8). Dwarf dust peaks

are broader than star-forming spirals alluding to the presence of a clumpy ISM with

multiple different temperature components (Boselli et al. 2010; Boselli et al. 2012;

Ciesla et al. 2014). The far-IR slope inferred from fits to DGS galaxies and the LMC

is therefore shallower, with an average metallicity independent spectral index of β =

1.7, compared to the Milky Way slope of β = 2.0 (Galliano et al. 2011; Rémy-Ruyer

et al. 2014).

Figure 1.8. Figure reproduced from Rémy-Ruyer et al. 2015. The ratio of dust
masses derived from MBB fits to those from physical dust model fits using the dust
model of Galliano et al. 2011. Galaxies from KINGFISH and the DGS are included.
The color represents the ratio of derived temperatures, with Tdust being derived from
Equation 1.10 with T0 = 19.7 K.

A consequence of the more intense ISRF is a reduction in the emission from

PAH grains in dwarf galaxy SEDs, with the strength of the spectral features and the

inferred PAH mass fraction varying inversely with the metallicity (Rémy-Ruyer et al.
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2013; Madden and Cormier 2019; Hunt et al. 2010; Henkel et al. 2022). In some

low metallicity systems PAH emission is completely absent (Engelbracht et al. 2005).

These small dust grains are likely destroyed by the more intense radiation, which has

also been observed within HII regions (Madden et al. 2006; Galliano et al. 2011). If

PAH grains preferentially form in molecular clouds, the ISM porosity of dwarfs would

result in a lower production efficiency. Finally, slower production of carbon from AGB

stars is another potential mechanism for inhibiting PAH formation (Galliano et al.

2008).

Similar to the PAH content, the CO emission in dwarfs is also underrepresented,

even for dwarfs undergoing intense star formation (Leroy et al. 2005; Schruba et

al. 2012; Cormier et al. 2014; Hunter et al. 2024). Shielding of molecular clouds

by CO molecules becomes inefficient at very low metallicities where the elemental

abundances mean there are fewer atoms to form CO from. Consequently, compared

to more massive galaxies there will be a greater fraction of CO-dark H2 gas, whose

presence has been inferred through comparisons of the excess IR emission relative

to the measured gas mass in the LMC (Bernard et al. 2008). The difference in

structure between molecular clouds for a low metallicity ISM is shown in Figure 1.9

This necessitates a higher XCO conversion factor for low metallicity environments

though its value remains poorly constrained at Z/Z⊙ < 1/5 owing to the difficulty in

detecting CO (Leroy et al. 2007; Leroy et al. 2011; Galliano et al. 2011; Rémy-Ruyer

et al. 2013).

Another key trait of dwarf galaxy SEDs is the observation of excess emission,

primarily identified in submillimeter bands (Reach et al. 1995; Lisenfeld et al. 2001;

Galametz et al. 2009; Bot et al. 2010; Galametz et al. 2011; Galliano et al. 2011; Grossi

et al. 2015; Chang et al. 2021), but also at millimeter wavelengths (Galliano et al.

2003; Galliano et al. 2005), relative to fits to standard dust models. While definitions

vary slightly, the excess can be described in terms of the higher-than-expected fit
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Figure 1.9. Figure reproduced from Hunter et al. 2024. Comparison of the extent
of H2 gas not traced by CO for a molecular cloud within a solar metallicity ISM
environment and one in a low metallicity ISM.

residuals for submillimeter and millimeter observations relative to a single isothermal

dust population in the case of the STMBB models or relative to the expected slope

from a single dust grain mixture in the physically motivated dust models. The excess

is often defined directly in terms of the residual in the relative flux in some band as

Rν =
fν,model − fν,fit

fν,model

, (1.13)

where ν is most often the 500-µm Herschel SPIRE band but can be longer owing

to the appearance of excess emission beyond Herschel’s coverage (Rémy-Ruyer et al.

2013; Gordon et al. 2014). In some dwarfs for instance, such as NGC 1569, the excess

has only been observed beyond 850 µm and at 1.3 mm and is not detected in the

Herschel/SPIRE 500-µm band (Lisenfeld et al. 2001; Galliano et al. 2003). Both

Magallenic clouds have been found to exhibit an excess (Israel et al. 2010; Bot et al.

2010) except for some star-forming complexes within them (Galametz et al. 2013).

The LMC and SMC allow for very high-resolution, spatially resolved studies of the

distribution of the excess. While present in massive star-forming galaxies (Dumke et

al. 2004; Galametz et al. 2009; Galametz et al. 2011) including the Milky Way (Reach
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et al. 1995; Paradis et al. 2012) and potentially M33 (Hermelo et al. 2016), it is more

commonly observed in low metallicity systems and with greater residuals relative to

model fits. Rémy-Ruyer et al. 2013 found that 41% of the DGS with Herschel SPIRE

500 µm detections exhibited excess emissions, with the lowest metallicity systems

having emission 150% higher than predictions.

Many hypotheses have been advanced to explain the excess emission. A secondary

population of very cold dust (VCD) grains with an effective temperature of less than

10 K would enhance the SED at submillimeter and millimeter wavelengths in a way

consistent with the observed excess. The resulting dust mass would, however, also be

significantly increased by as much as 80% (Galliano et al. 2003; Galliano et al. 2005;

Galliano 2022) which would be unrealistic in many scenarios given the molecular gas

masses which can be independently measured. Such VCD components would need

to be distributed in dense clumps. However, for the LMC, the excess emission is

most prominent in less dense regions, which rules out this scenario in this instance

(Galliano et al. 2011). This has similarly been found to be the case for non-barred

spiral galaxies (Hunt et al. 2015).

Instead of varying the dust temperature, the spectral properties of the grains can

be varied by introducing a temperature dependence to the grain emissivity (Meny et

al. 2007), which is observed by some laboratory measurements (Demyk et al. 2017b;

Demyk et al. 2017a; Galliano 2022). The variations in the opacity of some laboratory

analogs with temperature are shown in Figure 1.10. In this case, the emissivity index

β will decrease with temperature thus producing a shallower slope for colder dust

emitting at submillimeter wavelengths and beyond. Such a dust grain would likely be

comprised of amorphous carbon grains instead of the more structured graphite carbon

grains (Meny et al. 2007; Nashimoto et al. 2020). This approach has had some success

in explaining the LMC excess (Paradis et al. 2012), but not the SMC (Bot et al. 2010).

Gordon et al. 2014 similarly found that the LMC and SMC submillimeter excesses
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as measured in the HERITAGE survey are best fit through a MBB characterized by

two spectral emissivity indices rather than a TTMBB model, pointing to a change in

the emissivity as the culprit rather than additional dust populations.

Figure 1.10. Figure reproduced from Demyk et al. 2017a. The temperature de-
pendence of the average opacity (mass absoprtion coefficient) from several laboratory
dust analogs.

Differing emission mechanisms represent a third hypothesis for the source of excess

emission. These may include dipole radiation from magnetic nanograins comprised

of iron and iron oxides, as well as emission from small, spinning PAH-like grains that

contribute to the anomalous microwave emission at centimeter wavelengths (Draine

and Hensley 2012; Hensley et al. 2022). A fit to the SMC including both spinning

and magnetic grains is plotted in Figure 1.11. Draine and Hensley 2012 found that

for the SMC, spinning dust grains were insufficient to explain the observed excess,

but could be modeled with the inclusion of magnetic nanograins.
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Figure 1.11. Figure reproduced from Draine and Hensley 2012. SED fit to the
Small Magellanic Cloud dust emission that incorporates both spinning dust grains
and magnetic ferrous nanograins at a temperature of 40 K.

Inclination effects may also play a role in the interpretation of emission as an

excess or not in some cases. Using radiative transfer modeling in combination with

UV and submillimeter observations to constrain the distributions of stars and dust and

incorporate inclination information, Thirlwall et al. 2020 found that no adjustment of

dust properties was required to fit the SED in Messier 33, whereas previous studies had

identified the galaxy as showing an excess that required a different dust prescription

(Hermelo et al. 2016; Williams et al. 2019).
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CHAPTER 2

THE TOLTEC CAMERA

TolTEC (Bryan et al. 2018; Wilson et al. 2020) is an NSF-funded millimeter imag-

ing polarimeter currently installed on the 50-m Large Millimeter Telescope (LMT/

Gran Telescopio Milimétrico Alfonso Serrano; Hughes et al. 2020), which sits atop the

dormant volcano Sierra Negra in Puebla, Mexico at an altitude of 4600 m. Figure 2.1

shows the instrument in the receiver cabin at the LMT and Figure 2.2 shows the warm

optics components within the receiver cabin. The camera employs 7718 cryogenically

cooled dual polarization superconducting Lumped Element Kinetic Inductance Detec-

tors (LEKIDs; Austermann et al. 2018) divided among 3 monochromatic focal plane

detector arrays installed along a single optical path to image the sky at 1.1, 1.4, and

2.0 mm (273, 214, and 150 GHz) simultaneously. As a result, each observation with

TolTEC can produce a maximum of 9 maps of the same fields, with the additional

factor of 3 being accounted for by the 3 different Stokes polarization parameters I, Q,

and U. Owing to the large collecting area of the LMT, TolTEC’s theoretical diffraction

limited beam FWHMs are 5.0′′, 6.3′′, and 9.5′′ at 273, 214, and 150 GHz respectively.

The full field-of-view is 4′ in diameter, nearly matching the full field provided by the

LMT. Table 2.1 provides a comparison of the specifications of the TolTEC camera

with other ground-based submillimeter and millimeter instruments.

Construction of the instrument began at the University of Massachusetts Amherst

Department of Astronomy’s Cryogenics Detector Laboratory (CDL) in 2016 and the

first in-lab testing of the fully constructed and cooled camera occurred in late 2019.

TolTEC was transported and installed on the LMT in December 2021 and two com-
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Figure 2.1. TolTEC (far left) and its associated cryogenics and and readout hard-
ware in the receiver cabin at the LMT.

Figure 2.2. Figure reproduced from DeNigris 2024 showing the warm optics of
TolTEC in the receiver cabin. Photons are reflected from a series of mirrors (M3
through M6) before entering into the cryostat window. The primary (M1) and sec-
ondary mirrors (M2) are not pictured.
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Table 2.1. Instrument Specifications and Comparison

Instrument TolTEC1 NIKA22 SCUBA-23

Frequency (GHz) 273/214/150 260/150 666/353
Wavelength (mm) 1.1/1.4/2.0 1.2/2.1 0.45/0.85
FWHM (arcsec) 5/6.3/9.5 11.0/17.5 7.9/13.0
FOV (arcmin) 4 6.5 3.2
Detectors 7718 KIDs 3000 KIDs 10000 Bolometers
Telescope Diameter (m) 50 30 15
1 Wilson et al. 2020
2 Adam et al. 2018
3 Dempsey et al. 2013

missioning observation runs were completed in June-July and December 2022. Wil-

son et al. 2020 provide an in-depth discussion of the instrument design and detector

and cold optics characterization prior to on-sky commissioning. A full overview of

TolTEC, in-lab testing, and commissioning is given in DeNigris 2024. Details on the

cryogenic systems of TolTEC are given in DeNigris et al. 2020. Information on the

warm optics components is provided in Lunde et al. 2020 and Lunde et al. 2022.

In-lab characterization is also described in Wilson et al. 2020.

A key deliverable of the TolTEC project is the completion of 10 legacy surveys

aimed at answering fundamental questions in millimeter-wavelength astronomy. The

surveys will each total 100 hours in integration time and all data will be released pub-

licly following scientific verification of the data products. Of the 10 planned surveys,

the first 4 have already been defined through a public workshop of the TolTEC sci-

ence team members that was carried out at the University of Massachusetts Amherst

in late 2018 and will begin observations following the completion of the instrument’s

commissioning phase. These 4 surveys include the (1) Large-Scale Structure Survey,

(2) the Ultra-deep Survey, (3) the Clouds-to-Cores Survey, and (4) the Fields-in-

Filaments Survey. In addition to the legacy surveys, TolTEC accepts the submission

of PI-led science proposals as part of the LMT’s Call for Proposals from the US and

Mexican astronomy communities.
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2.1 TolTEC Detector Arrays

The use of Kinetic Inductance Detectors (KIDs) (Day et al. 2003; Doyle et al. 2008)

in the field of astronomy has increased significantly within the last decade owing to

advancements in their design resulting in improvements to their noise characteristics,

as well due to the ease and lower cost with which large detector arrays of 103 or 104

individual KIDs can be assembled. Ground-based cameras like NIKA (Monfardini

et al. 2010), NIKA2 (Adam et al. 2018), MUSCAT (Tapia et al. 2022), and CCAT

(Chapman et al. 2022) all employ KIDs for their detector arrays.

TolTEC utilizes LeKIDs (Doyle et al. 2008) operating at microwave wavelengths

or MKIDs. These are superconducting detectors built by combining an inductor and

capacitor into an LC resonator circuit. When a photon is absorbed by the detec-

tor, it breaks one of the electron Cooper pair which form in superconducting media.

The Cooper pair becomes a pair of quasiparticle whose presence alters the kinetic

inductance and subsequently the resonance frequency of the circuit. This temporary

change in resonance frequency, fr, of the circuit can be measured and used to di-

rectly measure the strength of the incoming radiation. When designing large arrays

of MKIDs, the resonator frequency of each detector is set by editing the capacitance

of the capacitor in each MKID to produce a set of unique resonance frequencies that

are separated from one another in frequency space thereby allowing for detectors to

be distinguished during readout. The MKIDs are driven at their measured resonance

frequency when not on source and coupled to a microwave transmission feedline to the

readout hardware via capacitive coupling. This simple approach allows for nearly 103

individual MKIDs to be read out on a single feedline with microwave multiplexing,

thus dramatically reducing the amount of required hardware to support data acqui-

sition. This contrasts with Transition Edge Sensors (TES), which are not only more

complicated to manufacture but also require a Superconducting QUantum Interfer-

ence Device (SQUID) in order to enable microwave multiplexing. This is particularly
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advantageous for astronomical applications where large-format ground-based cam-

eras operating at optical, FIR, and mm wavelengths can be assembled at lower costs,

within smaller configurations, and without extensive supporting hardware for read-

outs that can cause undesirable system heating (Sueno et al. 2022). Some scatter is

introduced into the intrinsic resonance frequencies of some fraction of MKIDs owing

to fabrication errors, which can result in frequency collision between two detectors.

Such cases can be ignored during data reduction, modeled if they do not completely

overlap in frequency space, or re-edited to adjust their capacitance further and shift

their resonance frequencies.

The noise spectra of KIDs are characterized by a noise component that is well-

modeled by a 1/f power law form. The uncorrelated component of the low-frequency

noise features arises due to two-level system (TLS) effects where the movement of

electrons between ground and excited states because of the electric field from the

microwave readout feedline (Austermann et al. 2018; Sueno et al. 2022). The design

of the MKID and the choice of materials used in their fabrication can mitigate TLS

noise. Other sources of noise include the number and recombination of quasiparticles,

whose mean lifetime sets the upper limit for the frequency response of MKID and

the heat from low noise amplifiers (LNAs) used for signal amplification in readout

hardware.

When observing from the ground, atmospheric turbulence adds another correlated

low-frequency noise component to the raw data which also varies over time (Choi et al.

2020). In order to filter this contribution, data cleaning algorithms during reduction,

modulation of the optical signal, and careful selection of on-sky mapping patterns

can be employed.

The calculation of the optical signal from the raw KID readout is fully detailed

in Ma et al. 2020 and Wilson et al. 2020. The actual quantity measured by KID

readouts is the scattering parameter or transmission coefficient S21. This is a complex
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number defined as S21 = I + iQ, where I and Q are the in-phase and quadrature

components. The scattering parameter is not proportional to the astrophysical signal

and therefore requires a transformation before the raw timestreams can be used to

make flux-calibrated maps. The fractional shift between the frequency that the tone

is being probed, fp, at and the actual resonance frequency fr for a given optical

loading is the desired quantity. This is known as the detuning parameter x and can

be determined by fitting S21 to a function parameterized as

S21(fp) = G
(
S̃21(fp, fr, Qr)

)
, (2.1)

where G is a complex gain function, S̃21 is the canonical form of S21, and Qr is the

resonator’s quality factor. The gain function can be written as

G = S̃21 + Kf + M (2.2)

and S̃21 as

S̃21 =
Q2

r

1 + 2Qrxi
. (2.3)

Consequently, x can be determined by fitting S21 to Equation 2.2 in the I-Q plane

to give derived values for G, K, M , fr, and Qr. With the fit in hand, it can then

be solved for the raw TODs during data reduction. The S̃21 parameter can be re-

expressed in terms of x and its corresponding quadrature channel r as

S̃21 = Ĩ + iQ̃ =
1

x + ir
, (2.4)

where comparisons with Equation 2.3 will reveal that r = 1/2Qr. For a perfect fit to

the resonator model, x and r will each be exclusively sensitive to the incoming signal

and readout noise respectively, thus making r a useful metric for examining resonance

model fit quality. An example of a single resonator’s response in the I-Q plane and

in the S21 and frequency space is plotted in Figure 2.3.
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Figure 2.3. Figure from Wilson et al. 2020. Left: Response of a single KID in the I-
Q plane. The black and red dots are the real resonator frequency and the probe tone
frequency respectively. Right: The resonator scattering parameter S21 as a function
of frequency for the same KID as the left panel. The red and black lines map to the
red and black points.

TolTEC’s MKIDs are built using titanium (Ti) and titanium-nitride (TiN) in a

TiN/Ti/TiN substrate trilayer, which has been shown to reduce TLS noise (Auster-

mann et al. 2018). The detectors are operated at a temperature of 100 mK. The

pixels on the detector arrays consist of two MKIDs, each sensitive to a single linear

polarization, oriented orthogonal to one another in pairs at angles of 0 and 90 for

one configuration and 45 and 135 degrees for the other. This means each pixel mea-

sures two orthogonal linear polarizations for the same on-sky position from which the

Stokes parameters can be derived. TolTEC’s arrays consist of single-color MKIDs

with detector counts chosen to optimize detector spacing for each band. With mi-

crowave multiplexing, the arrays are divided among 13 different readout networks

with 7, 4, and 2 networks dedicated to the 273, 214, and 150 GHz arrays respectively.

Figure 2.4 illustrates the physical design positions of the detectors on the arrays.

The TolTEC readout hardware computing system consists of 13 independent

ROACH-2 Field Programmable Gate Arrays (FPGA) boards matched to each de-

tector array. These are connected to two data recording and analysis computers that

write out the raw time-ordered data (TODs) at a maximum sampling rate of 488 Hz.
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Figure 2.4. Design positions of the KIDs for the 3 TolTEC arrays, with 4012, 2534,
and 1172 KIDS on each of the arrays. The colors represent the 13 different readout
networks. Each point contains two orthogonal KIDs. The holes are the locations of
the dark detectors that are not optically sensitive.

Each sample is time-tagged using a Global Positioning System (GPS) synchronous

Packets Per Second (PPS) signal that is common to all networks to ensure each can

be fully aligned temporally with one another.

2.2 The Large Millimeter Telescope

At 50 meters in diameter, the LMT (Hughes et al. 2010; Figure 2.5) is the largest

steerable single-dish millimeter telescope operating at 1.1 mm in the world, which

contributes greatly to TolTEC’s high resolving power. The telescope is designed

to support observations between 0.85 mm and 4.0 mm (353 GHz and 75 GHz). The

primary mirror is an active surface consisting of 180 different segments whose positions

can be adjusted independently in real-time to adjust for deviations in the primary

mirror shape introduced by gravitational effects as well as stochastic variations from

temperature and wind effects over the course of an observing night. The system is

designed to operate with a surface RMS tolerance of 75 µm which is well below the

requirements for TolTEC. The LMT’s 2.5 m secondary mirror’s position in the parallel

and orthogonal directions relative to the primary mirror can be adjusted along with

its angle to allow for telescope focusing and pointing alignment, as well as beam-
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switching observing modes (Mangum et al. 2007). Measurements of the telescope’s

pointing accuracy place the pointing and absolute pointing errors at an RMS of less

than 2.5′′.

Figure 2.5. The Large Millimeter Telescope. Image credit: Gopal Narayanan.

All information related to the state of the telescope and its on-sky position and

pointing corrections to its boresight in the relevant coordinate reference frames are

tracked by the LMT’s Telescope Control System (TCS). These are written to disk

at a sampling rate of 20 Hz for each observation. Each sample within the telescope

pointing vectors is time-tagged with the same GPS synchronous PPS signal as the

TolTEC raw data samples such that they can be properly aligned during data reduc-

45



tion. Owing to the different sampling rates, however, an interpolation onto TolTEC’s

higher sampling frequency is required.

The LMT site includes a meteorological station and a radiometer system that

measures the ambient temperature, pressure, humidity, wind speed, and direction, in

addition to the zenith atmospheric opacity at 225 GHz (Ferrusca and Contreras R.

2014). The average 225 GHz opacity derived from radiometer measurements over

the course of a full year is shown in Figure 2.6. The ideal observing season at the

LMT site occurs between the months of October to May with 25%, 50%, and 80%

of the time exhibiting opacities below 0.06, 0.10, and 0.28 respectively (Ferrusca and

Contreras R. 2014; Zeballos et al. 2016; Bryan et al. 2018). By contrast, the summer

months of June to September offer the poorest observing conditions at the site, with

values of τ225GHz > 0.15 being more common. Under such conditions, observations

above 150 GHz are challenging, though occasional nights of better weather conditions

do occur.

2.3 Continuously Rotating Half-Wave Plate

The low-frequency noise features of KIDs degrade the ability to recover faint as-

trophysical signals, which makes measurements of the polarized emission from sources

particularly challenging, as the fraction of polarized light in nearby star-forming re-

gions is often on the order of a few percent of the total intensity signal. One technique

to overcome this limitation is to modulate the incoming light in a way that shifts the

desired signal to higher frequencies where the noise is lower. This modulation can be

achieved by introducing a waveplate into the optical chain to shift the phase between

two orthogonal linear or circular polarization vectors thus rotating the polarization

angle. When the waveplate is rotated at a constant angular velocity, Ωw, it boosts

the frequency of the polarized signal to 4× Ωw.
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Figure 2.6. Measured average atmospheric opacity at 225 GHz at the LMT site for
each month given different precipitable water vapor (PWV) levels. Figure adapted
from Hughes et al. 2020 and http://lmtserver.astro.umass.edu/site.html
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Figure 2.7. TolTEC’s Continuously Rotating Half-Wave Plate mounted around the
optical window on the front of the cryostat. Image credit: Dennis Lee

Two achromatic half-wave (HWP) plates, which modulate linear polarizations

have been constructed for use with TolTEC (Lee et al. 2022). Their bandpasses are

centered between TolTEC’s own bands at 273 and 214 GHz and 214 and 150 GHz

respectively and they are rotated at a frequency of 2 Hz by a Continuously Rotating

HWP Rotator (CRHWPR). As shown in Figure 2.7, the CRHWPR is mounted out-

side the cryostat directly in front of TolTEC’s observing window instead of being a

cold optics component, thereby allowing the HWP to be removed to prevent intensity-

only observations from being affected by their bandpass coverage. An example of the

modulation induced in the data by the spinning HWP is shown in Figure 2.8.

The HWP orientation angle is tracked using an optical encoder, which measures

the time of each complete revolution of the HWP. The angle relative to the initial

encoder position can then be readily determined. The encoder values are written to

disk at a sampling rate of 1 kHz by dedicated hardware for the CRHWPR system. As
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is the case with the TolTEC data and LMT metadata, the samples are time-tagged

with a GPS synchronous PPS signal for eventual interpolation onto the TolTEC

sampling time grid.

Figure 2.8. Timestreams from 3 detectors on the 273 GHz array showing amplitude
modulation due to the rotating HWP. Image credit: Dennis Lee

2.4 TolTEC Data Handling

Network access to the LMT is severely limited, which has a significant impact on

how the camera’s status is monitored remotely and how its raw data products are

managed and reduced. TolTEC’s maximum sampling frequency of 488 Hz translates

to a data rate of approximately 30 MB/s or nearly 2 TB per observing night. A 30-

minute observation utilizing all three detector arrays outputs a total of 54 GB of data,

which cannot be readily copied off-site during an observing night. For this reason,

data reductions and the generation of necessary calibration data products and quick-

look maps for data validation must occur on-site. Two dedicated workstations have
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been installed to carry out full data reductions, perform detector setup and charac-

terization, and host data visualization servers. Each has a single socket 32-core Intel

Xeon Gold 5218 processor and 93 GB of DDR4-2933 RAM running the Ubuntu 20.04

operating system and are referred to as TACO and TACA. These therefore represent

the minimum required specifications that the TolTEC data reduction pipeline must

adhere to. Data is copied simultaneously from the readout hardware to both TACO

and TACA to allow for parallel data reductions and analysis to take place.

For off-site data reductions, in-depth analysis, scientific verification efforts, and

software development, members of the TolTEC collaboration have access to 3 high-

performance computing clusters (HPC). The primary HPC used for commissioning

data exploration is the Unity1 high-performance computing cluster located at the

Massachusetts Green High Performance Computing Center (MGHPCC), on which

there are 7 dedicated compute nodes for TolTEC data processing. Each node con-

sists of two 32-core Intel Xeon Gold 5218 processors with 384 GB of DDR4-2666

RAM and are also running on Ubuntu 20.04. Unity is connected to the Northeast

Storage Exchange (NESE) data lake where there are 400 TB of storage available for

TolTEC data. TolTEC software has also been installed and utilized on the Quest

HPC at Northwestern University and the National Institute of Astrophysics, Optics

and Electronics’s (INAOE) Mextli HPC. The ability to take advantage of these HPC

resources through parallelized data reductions is a central consideration in the design

of TolTEC’s reduction pipeline.

2.5 Instrument Operations

A single observing night with TolTEC consists of not only science observations but

also on-sky detector setup and characterization processes, as well as science readiness

1https://unity.rc.umass.edu/

50



observations. These are usually carried out in the order of (1) detector identification

and tuning, (2) flux calibration beammaps, (3) focusing, (4) first-order astigmatism

deformation corrections of the LMT’s primary mirror, and (5) pointing offset deter-

mination.

2.5.1 Detector Setup

Before observations of astrophysical sources can start, the resonance frequencies

of each KID must be measured for the current level of background loading. With

the telescope pointing at zenith, a sweep of the entire frequency range occupied by

the KIDs is performed. Each detector network is driven with 1000 separate probe

frequencies over a range of 500 MHz which are then shifted in 2 kHz steps to sample

the full range. After a peak finding algorithm is applied to acquire a rough estimate

of the resonance frequency location, a denser grid of tones spanning 175 kHz around

each peak is used to sample the resonator shape. They are then fit to Equation 2.3

and the values are written to disk to solve the models for the detuning parameter

x in observations of sources. An example sweep of the first readout network of the

273 GHz array is plotted in Figure 2.9. The initial coarse sweep can be carried out

once per night or shared across nights if the observing conditions have not changed

significantly. The denser sweep or detector tune is performed prior to each observation

as large shifts in loading that occur when moving between sources at radically different

elevations can result in poor re-recovery of the tone frequencies.

2.5.2 Observing Strategies

One consequence of the sweep and tune procedure is that TolTEC and its KIDs

are not sensitive to temporally and spatially invariant signals. As a result, the LMT

cannot remain stationary and integrate on a particular region of the sky nor can it

alternate between an on-source and blank sky field when observing with TolTEC.

Instead, the on-the-fly mapping strategy (OTF) is used in which the LMT is continu-
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Figure 2.9. Figure from Wilson et al. 2020. Top row: A network frequency sweep for
detector network 0 on the 273 GHz array intended to measure the frequency locations
of each KID. Bottom row: The derivative of S21 with respect to frequency for the
same sweep.

ously slewed over the source field along a pre-computed trajectory or mapping pattern

(Mangum et al. 2007). The choice of what map pattern to use for a desired region

size, integration time, source type, and flux depth is a complex parameter space and

can significantly impact observing efficiency, coverage of the field, and the quality

of the final maps produced. The sky signal should be sampled above the Nyquist

sampling interval of λ/2D as under-sampling can introduce aliasing artifacts and en-

large the beam along the scan direction which adds noise and limits the recovery of

small-scale features. Improper or insufficient removal of the low-frequency correlated

noise from the atmosphere results in non-uniformity or striping in the maps along

the telescope’s direction of motion (Poletti et al. 2017; Choi et al. 2020). This noise

striping can be mitigated by using OTF strategies that pass over the source from

multiple different directions to improve the “cross-linking” between scans (Tegmark

1997). For mapping strategies without good cross-linking, observations of the same

source can be taken at different times of the night to take advantage of sky rotation
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of the mapping pattern or coadded observations with rotated versions of the same

pattern.

TolTEC uses two primary mapping patterns for most of its observations which

were informed based on previous experience with the AzTEC camera (Wilson et al.

2008) and are illustrated in Figure 2.10. The first is the Raster map, which consists of

long, straight scans in one direction interspersed with short steps or “turnarounds” in

the orthogonal axis. These are ideal for mapping regions larger than the instrument’s

field of view. For a constant mapping speed, the overhead of a Raster map is inversely

related to the length of the scan owing to the relatively constant time spent at the

turnarounds. Unless Raster maps are coadded, they do not have good cross-linking

and are more susceptible to scan synchronous noise effects than other patterns.

The second pattern uses the parametric Lissajous curve to generate a trajectory.

The position as a function of time t of the Lissajous pattern in the arbitrary coordinate

reference frame (x,y) is given by

x(t) = xlen sin(ωxt + δ)

y(t) = ylen sin(ωyt),

(2.5)

with xlen and ylen determining the overall size of the mapped region, ωx and ωy

controlling the speed, and delta being a phase offset that tunes the angle between the

oscillations. Unlike the Raster, the Lissajous pattern is more well suited for fields at

the scale or smaller than the field-of-view. The pattern demonstrates a much higher

degree of cross-linking and incurs no overhead. However, depending on the parameter

choices of Equation 2.5, the Lissajous pattern can result in uneven coverage with a

relatively larger fraction of the time spent near the edges of the map.

Combinations of two Lissajous as well as a pattern consisting of a Raster modu-

lated by a Lissajous, referred to as a Rastajous map, are also used to improve coverage

and to take advantage of the benefits provided by both patterns.
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Figure 2.10. Left panel: Telescope boresight trajectory for a simulated Raster map.
Right panel: An example of a Lissajous mapping pattern over a smaller field.

2.5.3 Beammaps

Observations that are intended to measure flux calibration factors, fit the on-

sky detector centroids and beam sizes, and flag false or poorly behaving detectors

are referred to as beammaps. The deviations in the actual or estimated resonance

frequencies of TolTEC’s KIDs from their design specifications that arise from fabri-

cation errors and measurement noise make mapping a resonator to an actual KID

on the detector arrays a non-trivial task. This mapping is a required quantity for

coadding individual detectors into a single map. For this reason, it is necessary to

empirically measure the detector positional offsets relative to the telescope boresight

through an observation of a bright (typically > 1 Jy/beam at 273 GHz) point source.

Solar System bodies, including the planets Neptune and Uranus, the moons Titan

and Callisto, as well as asteroids/dwarf planets such as Ceres, 4 Vesta, and 2 Pallas

represent idea flux calibration sources at millimeter wavelengths owing to their well-

constrained emission properties and brightness. The Submillimeter Array (SMA; Ho

et al. 2004) maintains a public database of submillimeter/millimeter calibrators that

are routinely re-observed at 870 µ m, 1.1 mm, and 1.3 mm. These sources consist

of quasars, blazars, and BL Lacertae objects which were used as TolTEC beammap-
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ping targets during commissioning. Such sources can be highly variable due to AGN

activity, however, thus making them less ideal than Solar System bodies if they were

not observed with the SMA near in time to the TolTEC observation.

A beammap consists of a dense Raster of 300 azimuth scans at 5′ in length,

with elevation steps of 1.5′′. The telescope is slewed at a rate of 50′′/s and takes

approximately 30 minutes to complete. This ensures that the source is more than

Nyquist sampled in the elevation direction with approximately 3-7 scans crossing the

source in each of the TolTEC bands. When regular observing begins with TolTEC,

ideally at least two beammaps will be taken each night with one near the beginning

and one close the end to bracket any other observations taken during that night and

allow for the interpolation between beammapping derived data products as a function

of observing time.

Since reductions of beammaps must be carried out without the metadata provided

by beammaps themselves and because they are used to make per-detector maps and

derive per-detector characteristics for use in the other observation types, the data

reduction process differs considerably from that of the science and other calibration

observations, making use of an iterative mapmaking technique by default. The unique

reduction engine used for beammaps is described in Section 3.12.1.3.

2.5.4 Focus Observations

Variations in the ambient temperature and windspeed over the course of an ob-

serving night have a strong effect on the quality of observations and introduce both

systematic and random deviations into the secondary mirror position. Consequently,

the telescope will drift out of the optimal focus configuration and the beam shapes

will become distorted. Focus observations are carried out at the start of the night

and are repeated when pointing maps are determined to be out-of-focus by eye. Ap-

proximately 9 separate maps of the same source are made in succession with the
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vertical position of the secondary mirror shifted between -4.0 and 4.0 mm. Each map

is a 4′× 4′ double Lissajous pattern with an integration time between 30-60 seconds

depending on the source flux. In the data reduction process, the source at 273 GHz

in each of the maps is fit to a 2D Gaussian and the source amplitudes across all the

maps are subsequently fit to a parabola as a function of the secondary mirror offset.

The offset where the parabola is at its peak is taken to conform to the optimal focus

location. A set of fitted focus maps is shown in Figure 2.11.

Figure 2.11. Top panel: Parabolic fit to source amplitudes derived from 2D Gaussian
fits to observations of point sources. The position of the LMT’s secondary mirror was
varied for each point. The best focus position is marked by the dashed line. Bottom
Panel: Maps of the source at M2 position.

2.5.5 Astigmatism Observations

The setup of the astigmatism correction observations is nearly identical to that of

the focusing observations, with the same mapping pattern and data reduction process
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being used. Instead of shifting the secondary mirror position, the shape of the primary

mirror is deliberately deformed using the LMT’s active surface to adjust its level of

astigmatism. A series of 4 maps is then taken at deformations of -300 and 300 mm

and fit in the same way as the pointing maps. To correct higher-order deviations

in the antenna shape, out-of-focus holography techniques are required, which fit the

beam pattern in a series of focus maps to Zernike polynomials to derive a more precise

deviation model. Figure 2.12 shows the fitted amplitudes from a set of astigmatism

observations.

Figure 2.12. Same as Figure 2.11, but for an astigmatism correction observation
where the primary mirror shape is modified instead. The best astigmatism value is
marked by the dashed line.

2.5.6 Pointing Correction Observations

Pointing observations are carried out immediately before and after science ob-

servations so that measured offsets can be interpolated between and to confirm the
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focus of the telescope. The mapping pattern is identical to the focus and astigmatism

maps. Focus, astigmatism, and pointing observations all utilize the same reduction

framework which differs from both the beammapping and science processing. The

source is similarly fit to a 2D Gaussian model in the Azimuth and Elevation reference

frame, with the centroid position providing the pointing offset estimate. An example

of a quick-look map of a pointing observation is illustrated in Figure 2.13.

Figure 2.13. Quick-look 273 GHz map for a pointing observation of 3c345. The
map has been smoothed from its native resolution with a σ = 2.0′′ Gaussian kernel.
Parameters are derived from a 2D Gaussian fit to the smoothed map. The cutout is
a sum of the signal and uncertainty maps.
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CHAPTER 3

THE TOLTEC DATA REDUCTION PIPELINE

The extraction of the astrophysical signal from raw data in the time domain

requires the development of specialized software tools tailored to handle the needs

and idiosyncrasies of the astronomical instrument or instruments in question, their

data products and associated metadata, the observation setup, and the sky and source

properties. This process usually involves a transformation of the raw data streams

into a different coordinate reference frame that results in a large compression of its

size and dimensionality and is thus representative of a “reduction” in the complexity

of the data sets. These data reduction software packages or pipelines are usually

independent of software developed with the goal of performing scientific analysis and

instead provide the inputs to those tools. As a result, reduction pipelines are a

necessary component of any instrument and require extensive and careful planning

in conjunction with knowledge of the instrument design and expected performance

prior to the acquisition of data.

Ideally, reduction pipelines should recover an unbiased estimate of the source

signal and the uncertainty in its measurement and remove or filter all unwanted in-

strumental effects, noise contributions, and artifacts to the data as part of the process.

For ground-based observing, this is particularly challenging as a consequence of the

varying foreground atmosphere and background loading environment at the telescope,

in addition to the potential for external sources of interference or signal pick-up from

the ground. The optimal pipeline would also not introduce artifacts of its own and

have an identity transfer function for all astrophysical source types. This is similarly
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difficult as the algorithms and techniques used to filter undesired contaminants to

the data will also attenuate the signal in complex, often nonlinear ways that vary

with the source brightness, morphology, and scale. As such, the pipeline’s transfer

function must be estimated and be well-understood and characterized such that its

impact can be corrected for in post-processing stages.

For ground-based imaging cameras operating at submillimeter and millimeter

wavelengths, the primary data products of their data reduction pipelines are usu-

ally the two-dimensional maps of the source as a function of sky position that are

derived from arrays of incoherent detector timestreams. Pipeline development has a

long history in this field and includes such software packages as the SCUBA User Re-

duction Facility (Jenness and Lightfoot 1998; Jenness and Lightfoot 2014), Macana

for AzTEC (Scott et al. 2008), the Sub-Millimetre User Reduction Facility (SMURF)

for SCUBA-2 (Chapin et al. 2013; Jenness et al. 2013), the NIKA processing pipeline

(Catalano et al. 2014; Adam et al. 2014). The advent of second-generation cameras

like SCUBA-2, NIKA2, and now TolTEC has increased the requirements for data

reduction software by a wide margin in terms of having to accommodate newer detec-

tor technologies like KIDs, simultaneous multi-color imaging, polarization sensitivity,

and a much larger data volume.

As a point of comparison, TolTEC’s predecessor, AzTEC, imaged the sky at

a single band using 144 bolometer elements with a sampling frequency of 64 Hz;

TolTEC’s detector count is a factor of 53 times larger, divided across 3 arrays for which

data is collected in parallel at a sampling rate nearly 8 times faster. The resulting

increase in the data rate and output file sizes is a factor of 400. The performance of

computing hardware has not seen a similar growth in the same time frame. TolTEC

also supports additional hardware like the HWP, and its raw data products use inputs

from KID model fitting for every observation. This evolution necessitates a rethinking

of fundamental design choices in the pipeline design decisions from the ground up for
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current and future instrumentation. Access to high-performance compute clusters and

the parallelization of reduction algorithms across compute threads is now a critical

consideration, though these resources are not always usable, such as when reducing

data on-site while observing.

A second concern of the increased detector count other than the added compu-

tational requirements is the need to perform validation of data at various stages of

processing. As millimeter astronomy continues its shift into the “big data” realm, it

becomes increasingly difficult to examine observation and instrument characteristics

at the level of individual detectors. Data cuts and flagging to remove false or outlier

detectors are now most optimally done automatically with summary statistics and

metrics of detector populations becoming useful.

With these considerations in mind, we have developed the standalone high-performance

C++ data reduction software package Citlali1 to reduce TolTEC raw data timestreams

into science-ready maps for all categories of TolTEC observations. This chapter will

give an overview of the pipeline’s current version (v4.0) describing its architecture and

detailing its reduction algorithms and their arrangement into separate sub-pipelines

to handle the unique needs of beammmaping, focus, astigmatism, pointing, and sci-

ence observations. The discussion here supersedes the overview of the pipeline given

in McCrackan et al. 2022 which covers the depreciated v2.0 specifically.

3.1 TolTEC Software Architecture

Citlali is one component of the overall TolTEC software architecture that has

been constructed to meet TolTEC’s diverse data handling, analysis, simulation, and

visualization needs. The software stack can be broadly divided between the high-

1https://github.com/toltec-astro/citlali
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level Python data management framework TolTECA2 (Ma et al. 2020) and the low-level

C++ data reduction software, which includes the data reduction pipeline Citlali and

the KIDs processing library kidscpp, which carries out the model fits for the KIDs.

The low-level C++ data reduction software share between them a set of libraries for

managing CMake modules for compilation (tula cmake) and assembling frequently

used algorithms and functions (tula). All TolTEC data processing and reduction

software is fully open-source and hosted on its own repository on the TolTEC Project’s

GitHub.

The TolTECA Python framework is described in detail in Ma et al. 2020. Briefly,

it is a pip installable package that serves as the higher-level user interface and data

manager for most of the TolTEC software packages. Database management, auto-

matic collection of raw and metadata products for the execution of Citlali and

the hosting of web-based visualization tools developed using the Plotly Dash3 library

are handled by TolTECA. It also can generate simulated raw data using real or syn-

thetic KIDs model parameters of Equation 2.4, an on-the-fly mapping pattern, 1/f

and readout noise contributions, and a realistic atmosphere model derived from the

Time Ordered Astrophysics Scalable Tools 3 (TOAST3) software framework (Kisner

et al. 2021).

3.2 Citlali Codebase

The Citlali codebase is written entirely in the C++ programming language to

take advantage of the superior performance and memory management options relative

to a scripted language like Python. This choice is heavily motivated by the need

to reduce calibration and science readiness observations several times each observing

2https://github.com/toltec-astro/tolteca

3https://plotly.com/dash/
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night, where reduction performance on a single workstation is essential for maximizing

observation efficiency with the LMT and TolTEC. C++ allows for more explicit

control over memory allocation and deallocation with pointers and pass-by-reference

and many C++ libraries are built from the ground up to minimize the overall memory

usage and avoid the creation of temporary copies. This lowers the threshold for system

requirements on which Citlali can be run while further optimizing performance.

Parallelization of code occurs at a very low level in C++ and can be much more

efficient for CPU-bound tasks than Python’s own implementation. Citlali is a

multi-threaded software package and can therefore make efficient use of the resources

available on HPCs while still maintaining high performance on CPU and memory-

limited hardware.

Potential downsides to the use of C++ include the lower degree of portability

relative to Python, its more complex syntax, and the smaller pool of developers who

are familiar with the language. For these reasons, Citlali employs modern C++

programming practices to make extensions to the code and its readability easier.

It uses automatic build systems to simplify cross-platform compilation, expression

template metaprogramming to create type-independent functions, and external well-

documented libraries for critical reduction steps. The codebase is written with an

object-oriented focus and in a hierarchical and modular sequential pipeline structure

such that new reduction steps can added with little adjustment to other components.

Due to the emphasis on modular code design, much of the codebase is shared across

the different sub-pipelines or reduction engines that are written to reduce specific cat-

egories of TolTEC observations and produce their required outputs. These reduction

engines consist of the science (citlali::lali), pointing (citlali::pointing), and

beammap (citlali::beammap) classes which compose the timestream and mapmak-

ing algorithms together into different configurations. Other than the reduced level

of code duplication, a key advantage of this is that any observation can be reduced
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in any of the different modes and that there is a single unified user interface – the

Citlali configuration file – that is the same across every observation.

Citlali makes extensive use of open-source software libraries which provide fur-

ther optimizations for computationally expensive reduction steps, access to special

functions, and high-level abstractions of lower-level routines to streamline develop-

ment and improve code legibility. In selecting libraries, a preference was given to

those that are currently in active development, are well-documented, and are used

by other projects both in astronomy and industry. Libraries related to data storage,

performance, and parallelization that are used include:

• Eigen v3.4.0+ (Guennebaud, Jacob, et al. 2022): A critical design deci-

sion early in the development of Citlali was the choice of storage structures

for vectors and arrays of timestream and map data. C++ includes native array

and vector support, but these are limited in their ability to handle large multi-

dimensional data structures, have poor or no dynamic memory allocation sup-

port, and possess insufficient built-in support for matrix arithmetic and linear

algebra. For this reason, Citlali uses the Eigen library as its default method

for storing non-scalar numeric variables. Eigen is a high-level C++ header-only

template library built for vector and matrix storage, manipulation, and linear

algebra. Its vector, matrix, and array classes support containers of arbitrary

sizes for most standard data types. Both dense and sparse structures are im-

plemented. Higher dimensional tensors are available and are used occasionally

in Citlali. Eigen uses expression template metaprogramming and under-the-

hood design optimizations, allowing for functions and algorithms that use it to

take advantage of lazy evaluation, loop unraveling, and automatic vectoriza-

tion of Single Instruction/Multiple Data (SIMD) instruction sets. Modules for

Fast Fourier Transforms (FFTs), matrix decompositions, polynomial solvers,

and multidimensional spline fitting, and interpolation are available.
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• Ceres Solver v2.1+ (Agarwal et al. 2022): Reductions of all calibration

observations performed by TolTEC require a fit of the observed point source to

determine its amplitude, offset, and FWHM. For beammaps, a fit is performed

for every detector. Citlali uses Ceres Solver for its source fitting, which is a

non-linear least squares library developed by Google that provides support for

bounded or unconstrained problems, automatic and numeric differentiation, loss

functions for handling outliers, and covariance matrix evaluation for uncertainty

estimation.

• Sparse Eigenvalue Computation Toolkit as a Redesigned ARPACK

(SPECTRA4) v1.0.1: The atmospheric removal algorithm implemented in

Citlali uses a principal component analysis-based approach and is its most

computationally expensive timestream reduction stage. It requires the calcula-

tion of many of the largest eigenvalues in the detector timestream correlation

matrices. Although Eigen natively supports eigenvalue decomposition of its

matrices, the SPECTRA library can compute a subset of the smallest or largest

eigenvalues in a matrix without performing a full decomposition which is more

efficient.

• Generic Reusable Parallel Pattern Interface (GrPPI) v.0.4 (Rio As-

torga et al. 2017): Citlali uses a range of parallel patterns at different parts

of the pipeline when working with either timestream or map data. GrPPI is a

header library that allows for complex parallelization patterns to be composed

together in pipeline-like structures, including simple parallel loops as well as

parallel farms that spawn new workers based on inputs from a sequential data

stream. It supports most major parallel programming frameworks including ISO

C++ Threads, OpenMP, Intel Thread Building Blocks (TBB), and FastFlow.

4https://spectralib.org/
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• Boost5 v1.77+: The Boost Random Number Library and Special Functions

Library are employed for generating random deviates for jackknifed noise maps

and for computing Bessel functions for timestream filtering and mapmaking

respectively.

• FFTW v3.3.9+ (Frigo and Johnson 2005): Fast Fourier Transforms are re-

quired for computing the power spectral densities of timestreams and maps and

are also used in the convolutions carried out in map filtering. After benchmark-

ing, it was found that FFTW outperformed Eigen’s own FFT implementation

while also enabling under-the-hood parallelization for large matrices.

• Mlinterp (Azimzadeh 2017): This provides support for efficient linear inter-

polation in arbitrary dimensions and is used for timestream alignment between

TolTEC raw data, telescope boresight vectors, HWP orientation angles, and

pointing offset measurements.

Other external libraries are used in Citlali for the purpose of data I/O and

command line output and logging. These include the network Common Data Format-

4 C++ (netCDF4; Rew and Davis 1990) API for reading in raw data files, the CCfits6

library for writing output maps into the Flexible Image Transport System (FITS;

Wells et al. 1981) format, and the yaml-cpp7 parser library for configuration file

input. Command line output is performed by the combination of the spdlog8, fmt9,

5https://www.boost.org/

6https://heasarc.gsfc.nasa.gov/fitsio/CCfits/

7https://github.com/jbeder/yaml-cpp

8https://github.com/gabime/spdlog

9https://github.com/fmtlib/fmt
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and re210 libraries to provide formatted info, warning, debugging, and error output,

as well as regular expression handling.

3.3 Data Streaming and Parallelization Strategy

With the exception of observations with very short integration times like point-

ing maps, the size of most TolTEC raw data products is a significant fraction of

the available RAM on the timely analysis workstations at the LMT. Many of the

reduction algorithms, despite optimizations, still incur additional memory overhead.

Running on multiple threads and enabling map coaddition and the generation of jack-

knifed noise maps require additional memory, though this additional load is typically

much lower than the size of the raw data itself. To ensure future scalability of the

code, Citlali uses a data streaming model that does not necessitate the entire raw

timestreams to be stored in memory for reductions other than the beammapping en-

gine. In this model, the raw timestreams are subdivided into smaller chunks that

are passed sequentially into a parallel farm pattern over different compute threads as

they are read in from disk. This has the benefit of minimizing I/O bottlenecks as one

or more chunk is being reduced while another is being populated. Consequently, the

parallelization efficiency of Citlali is influenced by the relative difference between

the disk read speed to the amount of time required to reduce an individual chunk.

An alternative scheme would be reducing each chunk sequentially but instead,

parallelizing over individual detectors when possible. Most timestream reduction al-

gorithms involve a loop over detectors and this strategy would have potential benefits

if the number of chunks in an observation is less than the number of available physical

compute nodes. Except in a few instances, however, this is significantly less efficient

due to the more fine-grained implementation required for such parallelization. Par-

10https://github.com/google/re2
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allelized code introduces a small amount of thread startup and communication over-

head, which can become a significant limiting factor if they are used too frequently.

Per-detector parallelization is used for one of the mapmaking algorithms.

Per-map parallelization is also used when working in the map domain where chunk-

based parallelization is no longer possible. This reduces to a per-detector paralleliza-

tion scheme in the beammap reduction mode.

3.4 Software Compilation and Installation

Citlali uses the CMake11 v3.20+ build system to automate the generation of

the required C/C++ build files across different platforms. As the kidscpp library

is a required component of Citlali’s timestream reduction, it is fetched remotely

during setup, which in turn fetches the tula and tula cmake helper libraries. The

tula cmake library includes all CMake modules for compilation of the external li-

braries used in Citlali. When possible, the CMake modules provide 3 options for

finding libraries, including finding an existing installation, downloading the library’s

source files from its repository or host server, or using the Conan12 C/C++ software

package manager v1.55.

Citlali has been successfully compiled on Ubuntu 20.04, CentOS Linux 7.5, Red

Hat Enterprise Linux 7.9, and Intel-based MacOS 12, with either the GCC 11+ and

LLVM 13+ compilers.

3.5 Runtime Configuration

Citlali accepts a standardized configuration file written in the YAML data se-

rialization language as its sole input to modify reduction parameters at runtime.

11https://cmake.org/

12https://conan.io/
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YAML13 files are a minimal syntax, human-readable file format that support inputs

in most standard numerical and character data types in the form of scalars, lists, or

dictionaries within a hierarchical key-value node structure. All Citlali reduction

use the same configuration file regardless of the observation goal and the reduction

engine can be selected through a single configuration option. Mirroring the modular

nature of Citlali most reduction steps can be toggled on or off at runtime. Part of

the configuration file is shown in Figure 3.1.

Figure 3.1. Example of the runtime and timestream configuration YAML nodes
from the Citlali configuration file.

No default values are assumed for configuration parameters in Citlali. This was

a specific choice to prevent reductions using ill-fitting parameter choices outside of the

13https://yaml.org/
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user’s knowledge, particularly during TolTEC’s commissioning phase when optimal

reduction parameters have not yet been determined.

3.6 Pipeline Inputs

Citlali requires an assortment of file inputs to reduce data and create maps,

all of which are provided to Citlali within its configuration file. Some are optional

depending on the observation goal and the reduction type selected. These inputs

include:

• TolTEC raw data files from each of the 13 readout networks

• LMT telescope file

• HWP data file

• KIDs model parameter table

• Array Property Table

• Reduced Citlali maps

• Synthetic source maps

The TolTEC raw data files are stored in the netCDF4 file format and include the

full timestreams for every detector on the corresponding readout network. These are

the files output directly from the readouts without any pre-processing applied. Files

from an arbitrary number of different observations can be added which Citlali will

then reduce sequentially. All networks do not need to be provided even if included in

the KIDs model file and APT, as Citlali will filter out those networks at runtime.

The LMT telescope file is in the netCDF4 file that includes the information re-

quired to reconstruct the boresight pointing of the telescope in the Az/El and Ra/Dec

coordinate frames. Each observation or set of TolTEC raw data files has a single
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matching telescope file. The measured optical depth at 225 GHz from the LMT site’s

radiometer is stored here.

The HWP data file includes the encoder angle timestream and is an optional input

to Citlali as the HWP can be removed. It is also stored in the netCDF4 format.

The HWP, the telescope, and the raw data files each include the GPS PPS signal

measurements for every data sample.

The KID model parameter table is an output of the standalone kidscpp library

and includes fitted model parameters from equations 2.2 and 2.3 for each detector

as derived from the tune observations. It is written in the Enhanced Character-

Separated Values (ECSV) format which merges a CSV data table with a YAML

metadata header. These model parameters are kept separate from the raw data files

to allow for updates to the model in the future without requiring potentially risky

editing of the raw data files.

The final file input file to Citlali for the standard reduction modes is the Array

Property Table (APT) which is unique in that it is both an input and an output of

Citlali itself. It is an ECSV table that includes per-detector characteristics and is

a primary output of the beammap reduction engine of Citlali. As such it is not

a required input when reducing in the beammap mode but is needed for the other

modes. Important columns for other reduction modes include the parameters and

errors from fits of the beammap source in maps made for each detector, bad detector

flags derived from those fits, sensitivities, and the flux calibration factors. A few

metadata items extracted from the APT are shown in Figure 3.2.

For its iterative mapmaker, Citlali reads in the maps it wrote in either the

previous iteration or from a user-specified path. The pipeline can also optionally

accept an image in the FITS format to generate synthetic timestreams for exploring

the Citlali’s transfer function properties.
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Figure 3.2. Subset of the meta information contained in the Citlali APT.
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Other inputs that are neither files or reduction algorithm configuration parameters

include pointing offset measurements and the flux density for the beammap source in

each of the TolTEC bands. The pointing offsets are derived from pointing observations

and can be provided as either a single value to be used as a constant offset or as

a pair which are interpolated between. The Modified Julian Date (MJD) of the

pointing observations can be provided to improve the accuracy of the correction when

interpolation is performed. The beammap source fluxes are used to determine the

flux calibration factors.

3.7 Pipeline Outputs

Citlali generates a new directory for every reduction which is populated with the

reduction output files and a copy of the configuration file provided to it at runtime.

Subdirectories for each individual observation from input file list and for the coadded

data products are created, which in turn contain sub-directories for those products

associated with raw or filtered maps. The structure for the Citlali output directory

is illustrated in Figure 3.3.

The output files consist of:

• Raw and filtered maps

• Raw and filtered noise maps

• Map PSD files and histogram files

• Statistics file

• Array Property Table

• Pointing Property Table

• Timestream files
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Figure 3.3. Structure of the standard Citlali output directory, with individual
observation and coadded raw and filtered files divided into various subdirectories.
Citlali will create a new directory of this type for every reduction.

Citlali’s maps are written in the FITS file format, which was chosen due to its

widespread use across astronomy and the availability of existing software packages,

particularly the Python library astropy (Collaboration et al. 2013; Collaboration

et al. 2018; Collaboration et al. 2022) and the SAOImageDS914 application, to read

in and manipulate FITS image data directly. Each detector array receives its own

file, with the maps being stored as separate FITS extension Header Data Unit (HDU)

layers. Raw and filtered maps are also maintained as separate files. The full list of

14https://sites.google.com/cfa.harvard.edu/saoimageds9
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HDUs for single file is given in Figure 3.4. The maps output include the (1) signal,

(2) weight, (3) synthetic source, (4) coverage, (5) coverage Boolean, and (6) signal-

to-noise (S/N) maps. The coverage Boolean map identifies all pixels above a pixel

weight threshold given by the user at runtime and is intended mostly for visualization

purposes. Citlali can make maps for each array, network, or detector, so the total

number of extension layers within a file varies between files. There will be 3 copies of

each map type if a polarization reduction is enabled, corresponding to the 3 Stokes

parameters. In beammap mode, owing to the fact that a map is made for each

detector, only the signal and weight maps are included to reduce the file sizes and

increase the file write speed.

Figure 3.4. A list of the Header Data Units included in each FITS extension layer in
a single Citlali output FITS file. With the exception of the PRIMARY HDU, which
only contains a header, each includes both a header and a data array.

The FITS World Coordinate System (WCS) standard conventions are adopted,

such that the files can be used with the astropy.wcs module. All maps for an

individual observation are made on the same pixel grid and thus share the same WCS

information which is stored in every map header. An example header with its WCS

information from a signal map is shown in Figure 3.5. The coordinate reference frame

will be either the Right Ascension and Declination celestial tangent plane projection
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for science map reductions or an offset coordinate frame in Azimuth and Elevation

with the maps centered at (0,0) for calibration maps. The WCS units will be in

units of degrees for the former and arcseconds for the latter. Metadata related to

reduction parameters and derived quantities, observation identification information,

and telescope configuration is stored in the primary header.

Figure 3.5. Example of the header for a signal map from a science observation
showing the WCS setup.

The FITS files for the jackknifed noise maps are very similar to those of the data

maps using a separate extension layer for each noise realization. Figure 3.6 shows the

different extension layers of a noise FITS map. They also make use of the same WCS

as the observation files.
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Figure 3.6. The same as Figure 3.4 except for the jackknifed noise maps FITS file.
Each layer is an individual noise realization.

The map units will be determined based on the configuration file parameters

mapmaking->cunit and timestream->type. The former accepts values of mJy/beam,

MJy/Sr, Jy/pixel, and µKCMB. Internally, mJy/beam is used as the default unit and

the flux calibration factors within the APT are always in this unit. The beam size

refers to the average beam area for each wavelength within the beammap observation

that made the APT and can vary between APTs. As a result, all detectors within

an array receive the same conversion factor. For this reason, reducing science and

non-beammap calibration observations in mJy/beam requires the fewest number of

unit conversions. The standard FITS beam shape parameters keys BMAJ, BMIN, and

BPA are included in the primary HDUs. The conversion to uK is given by

dSν

dT0

=
2πθ2

2
√

2 ln(2)
× dBν(T0)

dT0

, (3.1)
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where T0 is the CMB temperature, θ is the FWHM of the beam for frequency ν, Bν

is the Planck function at T0.

The timestream->type parameter controls what type of data is used from the

output of the KIDs model solving to create the time chunk data, with allowed values

being the detuning parameter, x, its quadrature channel, r, and the corresponding S21

in-phase and quadrature channels I and Q. The flux calibrations are only physically

meaningful for x and r and only make sense if the beammap was reduced with the

same unit.

Two-dimensional PSDs and histograms for each signal map and the average of the

noise maps are output as netCDF4 files. Pixels with weights below the weight thresh-

old that controls the coverage Boolean map are not included in these calculations.

The statistics or “stats” file is similarly written in the netCDF4 format and includes

summary information of the timestreams on a per-time chunk and per-detector level.

Statistics like the detector means, RMS values, and the fraction that were flagged by

weight cuts are helpful in validating and characterizing the behavior of the individual

detector networks. The eigenvalues and eigenvectors from the atmospheric cleaning

can be optionally included.

As detailed in Section 3.6, the APT is an output for the beammaping engine only

and incorporates per detector information determined from that mode. The Pointing

Property Table (PPT) is an analogous ECSV table output by the citlali::pointing

reduction engine and is a key output for focus, astigmatism, and pointing reductions.

It includes fitted parameters and errors for the source in each array’s signal map

instead of for each detector. Unlike the APT, if map filtering or coaddition is enabled,

a PPT is generated for those as well. The source coordinates from the PPT in the

azimuth and elevation coordinate frame can be used as the inputs for the pointing

offsets in the configuration file.
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Citlali can output entire partially reduced timestreams following flux calibra-

tion or after atmospheric cleaning as netCDF4 files. As all timestream reduction

algorithms can be disabled, any combination of reduction steps can be applied prior

to their output. These files also include the flagging and synthetic source timestreams,

as well as processed telescope and per-detector pointing arrays. The primary purpose

of these files is to enable the reduction of TolTEC data with external data reduction

pipelines and mapmakers without needing to develop additional software tools for

translation. The flux-calibrated timestreams do not require information related to

the KIDs models, TolTEC, or the LMT to be processed making them easier to incor-

porate into standalone software pipelines. These are also convenient for testing and

verifying reduction algorithms and for data characterization and verification during

commissioning.

3.8 Verification of Algorithms

Many of Citlali’s fundamental algorithms, particularly those related to timestream

reduction, mapmaking, and map filtering are derived from the AzTEC data reduc-

tion pipeline (Scott et al. 2008). Early in the Citlali development cycle, these

algorithms were translated to the new codebase and rewritten to add optimizations,

improve modularity, and deal with TolTEC-specific data features. During this pe-

riod, the newly implemented algorithms underwent a testing phase where they were

directly applied to AzTEC raw timestreams and compared to results produced from

the AzTEC pipeline, which has undergone extensive verification through published

scientific results. Later, the TolTEC observation simulator was used to create simu-

lated datasets with realistic detector and atmospheric noise which allowed for detailed

characterization and benchmarking of each phase of the pipeline.

Commissioning observations from 2022 allowed for the first full integration of

Citlali with the rest of the TolTEC software stack as well as providing critical tests
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of every pipeline stage through analyses with real data. In particular, the observations

informed developments of better detector flagging routines, the iterative mapmaking

algorithm, and improvements to the polarization reduction algorithm.

3.9 Pipeline Structure

A high-level view of the structure of Citlali is illustrated in Figure 3.7. The

pipeline can be logically divided into four components which are executed in or-

der, though some may be repeated when reducing multiple observations or when the

iterative mapmaker is enabled. These phases are the (1) initial configuration, (2) ob-

servation setup, (3) timestream reduction, and (4) mapmaking, and post-mapmaking

stages. The following sections will describe each phase.

Figure 3.7. High-level view of the Citlali data reduction pipeline.

3.10 Initial Configuration

The first phase is the simplest, where the Citlali YAML configuration file is

read in, and its values are validated against allowed values and ranges to ensure all

required keys are present, that the values are reasonable, and that the datatypes are

correct. If erroneous values are found, Citlali will cleanly exit and print a list of
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the configuration keys that require adjustment. Some preliminary setup is performed

here, which mainly involves populating the timestream processing and mapmaking

classes with values derived from configuration inputs. The pipeline then selects the

corresponding reduction engine class for use depending on the reduction type from

the config file.

The file list is also parsed and all files and observation-specific parameters like

pointing offsets and source fluxes are assembled into a vector of data classes for each

observation. No actual data other than file header information for input validation is

read in at this stage.

3.11 Pipeline Setup

After parsing the configuration file, the number and dimensions of the maps are

calculated in a loop across all included observations. The number of maps simply

depends on the map grouping provided by the user (i.e. array, network, or detec-

tor), which files are included in the list of raw data inputs, and if polarized maps are

requested. This is allowed to vary between observations if necessary. Before the cal-

culation of the map dimensions can occur, three other quantities must be determined.

First, the telescope pointing vectors must be interpolated from their native sampling

frequency onto a time grid common to all the TolTEC networks. The boresight tan-

gent plane projection coordinates and the start and end vector indices for the data

time chunk are also required. The current observation’s telescope file and APT are

therefore read in and parsed at this point.

3.11.1 Timing Interpolation

The absolute Coordinated Universal Time (UTC) of each sample in the telescope

vectors and raw timestream data can be calculated from the GPS PPS synchronous

signal with
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t = t0 + PPS +
Clock− PPS

ffpga
, (3.2)

where T0 is the UTC of the first sample, PPS is the PPS count, Clock is the clock

count, and ffpga is the frequency of the network FPGA readout. The value for T0 is

calculated by

t0 = int(sec0 + nanosec0 × 10−9 − 0.5), (3.3)

with sec0 and nanosec0 being the second and nanosecond components of the PPS sig-

nal respectively. Each of the TolTEC networks may begin recording data at slightly

different times, so the common time grid used consists of all samples after the time

that the last network begins recording and ends when the first network stops record-

ing. A start and end index are stored for each network and used to offset the raw

data when it is read in during later phases.

Once the grid is calculated, all telescope vectors are interpolated over. The point-

ing offsets from the configuration file are also interpolated across to determine the

necessary correction for each sample.

3.11.2 Coordinate Frame Calculations

The tangent plane or local geodetic reference frame is used for all Citlali maps.

In the Azimuth and Elevation coordinate system, the tangent plane coordinates are

calculated with

Aztan = cos(El − Elcor)× (Az − Azsource)− Azcor (3.4)

and

Eltan = El − Elsource − Elcor. (3.5)
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In these equations, (Az, El) are the telescope boresight coordinates in absolute co-

ordinates, (Azcor, Elcor) are corrections from the LMT pointing model and observer

offsets, and (Azsource, Elsource) are the source coordinates.

In the Ra and Dec frame, the tangent plane calculations are given by

αtan = cos(δ)× sin(α− αcenter)

cos(c)
(3.6)

and

δtan =
cos(δcenter) sin(δ)− sin(δcenter) cos(δ) cos(α− αcenter)

cos(c)
. (3.7)

Here, (δ,α) are the boresight coordinates and (δcenter, αcenter) is the map tangent point

which is typically taken to be the center of the map. The denominator term is

cos(c) = sin(δcenter) sin(δ) + cos(δcenter) cos(δ) cos(α− αcenter) (3.8)

.

3.11.3 Time Chunking

For Raster maps, the default time chunk size is equivalent to the length of an

individual scan. The LMT telescope file includes a HOLD signal that records when

the telescope is on and off trajectory, which is used during reduction to identify and

exclude the samples corresponding to the turnarounds. Figure 3.8 plots the telescope

trajectory for a beammap observation, highlighting the identification of the samples

where the telescope is turning around.

Observations using the Lissajous, double Lissajous, and the Rastajous pattern are

instead divided into a series of equal-length time chunks whose duration in seconds

can be adjusted in the configuration file. Raster map chunking can also optionally be

overwritten to use this mode.

83



Figure 3.8. Raster map pattern from a beammapping observation with TolTEC.
The orange curves represent the turnaround points as measured by the LMT’s HOLD

signal and will not be included in the final maps.
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A bandpass filter may be applied during the later timestream reduction stages,

which has the effect of reducing the size of the time chunk owing to the filter convolu-

tion. In order to prevent the loss of a large fraction of data, each time chunk, except

for the first and last, are extended by half of the filter size on either end, such that

they include overlapping data. The setup is illustrated in Figure 3.9. After the filter

has been applied, this extra data is discarded.

Figure 3.9. Diagram of the chunking strategy used in Citlali. Each orange block
represents an individual time chunk in the timestream. The outer chunks include
overlapping data and are read from disk. After timestream filtering, only the inner
chunks are used.

3.11.4 On-sky Detector Pointing

With the interpolated telescope vectors, boresight tangent plane coordinates, and

time-chunk indices, the global maximum and minimum coordinates of all detectors in

the tangent plane coordinates are then calculated. The APT provides the measured

offset coordinates (Azoff,0, Eloff,0) for each detector at an elevation of 0 degrees.

These values will be 0 when beammapping, such that the maps will be centered on

the boresight as opposed to each detector’s offset position for that mode. For each

sample, these are rotated to the current elevation (El):

Azoff

Eloff

 =

cos(El) − sin(El)

sin(El) cos(El)


Azoff,0

Eloff,0

 . (3.9)
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For maps made in the Az/El frame, a detector’s position is just the sum of its coor-

dinates (Azoff ,Eloff ) and the boresight coordinates or

Azdet = Azoff + Aztan

Eldet = Eloff + Eltan.

(3.10)

To determine the detector pointing in the Ra/Dec frame an additional rotation of

(-Azoff , Eloff ) by the parallactic angle PA is required in addition to adding the

boresight offset (αtan, δtan):

αdet

δdet

 =

cos(PA) − sin(PA)

cos(PA) sin(PA)


−Azoff

Eloff

+

αtan

δtan

 . (3.11)

A detector’s pointing is not permanently stored in Citlali but is instead calculated

on-the-fly whenever it is needed to save memory.

3.11.5 Map Setup

The required number of map rows and columns is simply defined by the smallest

region that includes the maximum and minimum tangent plane coordinates from all

detectors that were not flagged as bad in the APT. The pixel size is provided as

a configuration file parameter, with the standard value used during commissioning

being 1′′. All three detector arrays are co-aligned and have the same sized footprint

on the sky so the same map and pixel size can be used for all of them without

unnecessarily adding extra pixels.

If map coaddition is requested, its dimensions are calculated from the union of

the individual map sizes. Citlali’s coaddition routine uses the same pixel size for

the coadded maps as the individual observation maps and assumes all observations

to be co-centered at the same on-sky coordinates. Memory for the coadded maps is

allocated immediately after this calculation.
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3.12 Timestream Reduction and Mapmaking

Phase 2 timestream and mapmaking reduction begin after the map dimensions

are calculated and stored and the memory for the coadded maps is allocated. Here,

Citlali loops through each observation, recomputes timing grids for the raw data,

pointing information, and HWP angle, and then begins the reduction. The reduction

loop through observations may be performed iteratively using information from the

previous iteration.

Citlali includes many timestream processing algorithms and mapmaking strate-

gies which are selectable and customizable in the runtime configuration file. The

timestream reduction algorithms serve to remove instrumental effects or badly be-

having detectors and to filter the atmospheric and other noise contributions. The

mapmaking routines specifically refer to the transformations carried out to translate

the data from the time domain to the map-space. Each algorithm consists of a self-

contained class that accepts the minimal amount of contextual information required

to carry out its operations, thereby making the development and addition of new

components more manageable.

Within Citlali a time chunk represents the minimum-sized block of timestream

data that the pipeline will process and can be thought of as Citlali’s fundamental

data object. Two separate time chunk classes are defined to hold all data that is

unique and relevant to a single chunk. This includes the data, synthetic source,

and flag timestream matrices, in addition to detector weights and the sub-set of the

telescope vectors, pointing corrections, and HWP orientation angles corresponding

to that chunk. The APT is not included as it is common to all time chunks and

does not incorporate per-sample information. Also, as previously discussed, no per-

detector pointing information is stored as these are calculated when needed. The two

classes are the raw time chunk data (citlali::RTCData) and processed time chunk

data (citlali::PTCData) classes. Both inherit from an underlying time chunk class
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(citlali::TCData) that incorporates variables common to both chunk variants. Each

retains a history of which reduction stages have been applied to it as well as some

basic statistics.

In the pipeline, a citlali::RTCData instance is declared and populated from

the raw data, converted into a citlali::PTCData through successive time chunk

processing, further processed, and then passed to the mapmaking classes after which

it is deleted. The transformation of the raw chunk into a processed chunk occurs

immediately following timestream decimation and prior to atmospheric cleaning. The

division is motivated by the fact that decimation incurs a reduction in the size of

the timestream arrays along the time axis and that the citlali::beammap engine

requires the storage and re-use of every chunk before atmospheric cleaning. The

incorporation of external mapmaking pipelines also prompts the timestreams to be

optionally written to disk before atmospheric cleaning is carried out thus making it

a logical dividing point.

The time chunk classes are paired with two corresponding processing classes for

raw (citlali::RTCProc) and processed (citlali::PTCProc) time chunk process-

ing that perform the actual timestream reduction operations. Each includes a run()

function that accepts either a citlali::RTCData or citlali::PTCData as input and

applies all enabled timestream reduction steps sequentially. The various reduction al-

gorithm classes like timestream::Despiker and timestream::Cleaner are declared

in their respective processing class. The member classes of the citlali::RTCProc

class are illustrated in Figure 3.10. They also inherit from a base processing class,

citlali::TCProc, and share functions to carry out bad detector flagging, time-

domain source addition and subtraction, region masking, inverse mapmaking routines

for iterative mapmaking, and the ability to append the data they hold to Citlali’s

outputs timestream netCDF files.
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Figure 3.10. Timestream reduction steps called by the citlali::RTCProc class.
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The objects related to the storage and manipulation of data in the map domain

consist of a class for holding all data and noise maps and related information for either

a single observation or coaddition (mapmaking::MapBuffer) and individual classes for

the two different mapmaking routines currently implemented (mapmaking::naive mm

and mapmaking::jinc mm). The mapmaker classes accept the citlali::PTCProc

time chunk classes as inputs and add their samples into the various map matrices of

the mapmaking::MapBuffer class.

3.12.1 Reduction Engines

The timestream processing and map classes thus far discussed are collected within

the 3 high-level reduction engine classes, citlali::lali, citlali::pointing, and

citlali::beammap, whose operations are the primary drivers of the stage 2 pipeline

phase. These engines are written to provide the unique assembly of lower-level reduc-

tion steps required by science, pointing, focus, astigmatism, and beammap observa-

tions. Citlali uses the C++ std::variant class template functionality to instan-

tiate these classes and enable easy switching between them in a single main.cpp file

with the single configuration file option runtime->reduction type. These inherit

from a citlali::Engine class that manages per-observation routines like output di-

rectory setup, file writing, and map filtering. All timestream processing, map and

mapmaking, and post-mapmaking filtering classes are declared in citlali::Engine.

All of the reduction engines declare a setup(), pipeline(), and output() func-

tion that are called in that order in main.cpp. The setup() function re-initializes

all variables and containers necessary for the reduction of each observation while

also creating per-observation output directories. The actual timestream reduction

and mapmaking is performed within pipeline() which accepts a KIDs processing

class, citlali::KidsProc, as its only input. This class acts as the interface between

kidscpp library that is also compiled with Citlali and the rest of the pipeline. It
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is used to extract data and header information from the raw TolTEC data files and

solve the KIDs model with the tune ECSV file. As its name suggests, output()

writes the map FITS, APT, PPT, PSD, histogram, and stats files for each observa-

tion. It is re-used for coadded FITS files as well. The netCDF4 timestream files are

not written here as they are appended while the time-chunks are reduced so that the

entire reduced timestream does not need to be stored in memory. Some final header

information that requires the final maps to be generated is added here.

3.12.1.1 Science Observation Reductions

Science observation reductions are reduced with citlali::lali which is the sim-

plest of the reduction engines. A schematic is illustrated in Figure 3.11. In the

pipeline() function a grppi::pipeline object is used to produce a single-threaded

data stream of populated citlali::RTCData classes from the raw TolTEC data files

in conjunction with the pre-computed time chunk indices. The citlali::RTCData

classes are then fed directly into a grppi::farm parallel pattern which will create

a new thread to carry out all timestream and mapmaking reduction stages on that

chunk. Once the contributions from all time chunks have been added to into the

observation map, the maps are normalized and the PSDs and histograms are calcu-

lated, which occurs outside of the farm. These are however still parallelized over the

number of maps but at a much lower level. File output for the current observation

occurs directly after this.

3.12.1.2 Focus, Astigmatism, and Pointing Observation Reductions

The primary unique data product for all the non-beammap calibration observa-

tions are the fitted parameters for the observed point source. Consequently, their

reductions are identical and can use the exact same code regardless of whether the

fits are used in different ways post-reduction. The citlali::pointing reduction

engine is very similar to the citlali::lali engine as shown in Figure 3.11, with the
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Figure 3.11. Diagram of the citlali::lali and citlali::pointing reduction
engines. The two engines primarily differ in the ”Map Reduction” step. Square
blocks represent reduction functions or classes and the parallelogram are data classes.
Diverging arrows represent processes being spawned to individual threads by the
GRPPI::farm pattern, which then are collected during the mapmaking step.
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primary difference being the addition of the map fitting step that fits point sources in

the maps to a two-dimensional elliptical Gaussian with the Ceres-Solver library. De-

spite the similarities, it is kept as a different reduction engine from citlali::lali to

maintain a distinction between the specific needs of each of the observation types and

to allow for future expansion that may cause the reduction approaches to differ more

substantially. The routine uses the S/N map to find an initial guess position within

a sub-region of the map selected by the user. The setup() function initializes the

PPT which is populated after the fits are performed following map normalization in

run(), and written to the ECSV table in output(). While non-beammap calibration

observations are not expected to be coadded, a fit is also performed for these maps

in addition to raw and filtered maps as well. When iterative mapmaking is enabled,

fits will also be performed for the maps of each iteration as the iteration loop wraps

around the setup(), run(), and output() functions in main.cpp.

3.12.1.3 Beammap Observation Reductions

The citlali::beammap engine differs substantially from the other two classes.

With the goal of beammaps being to determine individual detector offset positions,

beam shapes, and flux calibration factors, individual detector maps must be produced

and fit to a two-dimensional Gaussian model. The atmospheric removal step that is

necessary before the maps can be produced and fit significantly impacts the estimate

of the flux calibration factors in a negative way. The point source flux will be at-

tenuated by the cleaning algorithm which will then bias the flux calibration factor

to predict a higher value. This will likely be a wavelength-dependent effect as the

same cleaning parameters when applied to the longer wavelength bands will produce

a greater reduction in source flux on the source owing to lower opacity and larger

beamsizes. Citlali does include an optimal point source filter that can use the

synthetic point source maps to correct for flux lost during atmospheric removal, but
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this is too computationally expensive for beammaps when reducing on-site as each

detector’s map must be filtered and will require jackknifed noise realizations. The

filter also has the effect of smoothing the maps and increasing the beam width.

To correct for this undesired effect, an iterative timestream reduction and map-

making routine is used in citlali::beammap which is illustrated in Figure 3.12. In

this approach, the timestream reduction is broken into two components that mirror

the separation in the raw and processed time chunk classes. The grppi::pipeline

and grppi::farm from the citlali::lali and citlali::pointing reduction en-

gines is the first component, but instead of carrying out all timestream and mapmak-

ing routines it now ends before atmospheric cleaning is applied to the time chunks.

The citlali::PTCData classes output from citlali::RTCProc are collected into a

std::vector to be used after the parallel farm has been completed.

Following the completion of the first pipeline, an iteration while loop is started. A

copy of the vector of citlali::PTCData classes is made as the original timestreams

before cleaning are required for each iteration. As a result, citlali::beammap must

hold in memory two copies of the entire timestream data within all the time chunks,

though this is usually much smaller than the raw data when timestream decimation

is used. On the first iteration, the citlali::PTCProc reduction algorithms, namely

cleaning, flagging, and detector weight calculation, are applied to this copy. Individ-

ual detector maps from the cleaned timestreams are made and fit to a 2D symmetric

Gaussian model. Symmetry is enforced since the cleaning algorithms and Raster map

pattern introduce a compression of the beam width in the scan direction. On sub-

sequent iterations, the source as determined by the two-dimensional fit is subtracted

from the uncleaned timestreams and re-added after it. This has the effect of remov-

ing a large fraction of the source contribution from the detector correlation matrix

eigenvalues used in the principal component analysis cleaning algorithm. This con-

tribution is therefore not attenuated and is carried through to the final maps. This
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Figure 3.12. Similar to Figure 3.11 but for the citlali::beammap reduction engine.
Thick lines represent parallelized for loops over time chunks or detectors. The first
farm pattern ends with the citlali::PTCData classes being collected into a vector.
A copy of these are processed in the later stages. If the map fits converge, the
APT is generated and written to disk. Otherwise, the process is repeated using the
citlali::beammap iterative mapmaking algorithm.
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is repeated until the percent difference between fits of two iterations is below a user-

specified tolerance indicating convergence or until the maximum number of iterations

is reached. The convergence of each detector is checked at the end of each iteration

and converged detectors are not re-fit on later iterations.

Parallelization of the iterative citlali::beammap pipeline is also slightly more

complex than in the other reduction engines to maintain efficiency when timestream

output is enabled. The citlali::PTCProc reductions of each citlali::PTCData

copy and mapmaking are parallelized using two grppi::map patterns over time chunks,

which are the exact equivalent of a parallel for loop. Timestream output occurs be-

tween these two loops as this must be performed sequentially. Map fitting is paral-

lelized over the number of maps which in this case is the number of detectors.

After all maps have been fit, the APT is constructed in citlali::beammap. The

fitted parameters are checked against limits provided in the Citlali configuration file

and are flagged as bad if they fall outside of the allowed range. Spurious features in

frequency sweeps that were erroneously identified as real KIDs will generally produce

very noisy maps with no source present in them. The limits include upper and lower

bounds on the beam FWHM, array footprint size, and S/N. The median sensitivity

across all time chunks for each detector is also calculated and can be used for flagging.

Optimal ranges for these parameters are informed based on theoretical expectations

of the instrument and detector characteristics. Resonators colliding in frequency

space can result in two sources appearing in a single map and are difficult to identify

automatically at this stage. They are instead flagged during timestream reduction

by placing a lower limit on the frequency separation on the tones.

After flagging, the fitted detector positions in the Azimuth and Elevation coordi-

nate frame are offset with respect to an unflagged reference detector which is chosen

to be the one closest to (0,0). The centroids are then de-rotated by the mean elevation

of the beammap source to the horizon as they will be re-rotated to the elevation of
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each sample in the other reduction engines according to the calculations in Section

3.11.4.

Finally, the flux calibration factors for unflagged detectors are calculated by

FCFν =

(
Fcalib

xfit

)
× e−τν , (3.12)

where Fcalib is the calibration source flux in units of mJy/beam, xfit is the amplitude

from the beammap source fit in units of the detuning parameter, and τν is the mean

opacity for each of the TolTEC bands. The opacity calculation is described in Section

3.12.2.2.

3.12.2 Raw Timestream Reduction Algorithms

In this section, I describe the main timestream reduction algorithms that are

handled by the citlali::RTCProc class and are applied to the timestream data

before atmospheric filtering in the order that they are carried out.

3.12.2.1 KIDs Model Solving and Flux Calibration

The first timestream reduction step that occurs is the transformation of the

timestream data from the signal in the raw (I,Q) plane to the (x,r) frame by us-

ing the fitted solution to 2.3. The FCF from the APT given in Equation 3.12 is then

multiplied against all samples for each detector, as are any unit conversions from

mJy/beam to the other supported units that were calculated in phase 1.

3.12.2.2 Extinction Correction

Even at high altitudes in dry locations, water and oxygen molecules in the tro-

posphere introduce broadband absorption at millimeter wavelengths which must be

corrected for to derive accurate flux density estimates of astrophysical sources (Ferr-

usca and Contreras R. 2014). The LMT radiometer records the zenith atmospheric

opacity at 225 GHz in 15-minute intervals. Citlali uses the am atmosphere model
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(Paine 2022) to derive an estimate of the opacity in each of its bands based on the

measured zenith τ225GHz value. The am model is a radiative transfer code that cal-

culates the transmission as a function of frequency through simulated atmospheric

layers whose properties are constrained from observations with the NASA Modern-

Era Retrospective analysis for Research and Applications (MERRA) mission.

Simulated atmospheric transmission for the 25, 50, 75, and 95 percentile weather

conditions at the LMT site have been computed for elevations between 10 degrees

and 80 degrees in steps of 10 degrees. The 25 percentile transmission as a function of

frequency and elevation is plotted in Figure 3.13. The transmission Tx at elevation

angle θEl is related to the opacity by

Tx(θEl) = exp(−τν(θEl)). (3.13)

The optical depth at elevation angle θEl can be derived from the zenith opacity with

τν(θEl) = τν(90◦)× A, (3.14)

where A is the airmass and is estimated as

A = sec(90◦ − θEl)
(
1− 0.0012

(
sec(90◦ − θEl)

2 − 1
))

, (3.15)

as given in Young and Irvine 1967. The ratio of the transmission at 225 GHz to

the transmission in each of the TolTEC bands is fitted to an order 6 polynomial as

a function of elevation for each percentile. Figure 3.14 shows the fit results for the

25 percentile atmosphere case. During reduction, the transmission at τ225GHz at the

elevation of every sample is calculated using equations 3.13, 3.14, and 3.15 and the

polynomial fit is then used to find the TolTEC band transmissions for each sample.

The same equations are then inverted to give τ273GHz, τ214GHz, and τ150GHz. Citlali

compares the measured zenith τ225GHz to each of the percentile model’s τ225GHz at 80

degrees and automatically selects the percentile model that has the nearest value.
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Figure 3.13. Simulated atmospheric transmission as a function of frequency as
calculated by the am* atmosphere model. Each curve is the transmission for a different
elevation with values 10 and 80 degrees. The vertical lines mark the frequencies of
the radiometer and the TolTEC bands.
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Figure 3.14. The data points are the simulated atmospheric transmission as a
function of elevation for the 3 TolTEC bands. The lines are order 6 polynomial fits
to the points. The atmosphere model is assuming 25 percentile observing conditions
at the LMT site.
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The extinction correction is then applied to the FCF as in Equation 3.12 on

a per-sample basis. A mean value of the extinction-corrected FCF is stored in the

citlali::PTCData class to calibrate the detector sensitivities if these are used during

detector weighting.

3.12.2.3 Synthetic Timestreams

The timestream and mapmaking algorithms implemented in Citlali impose a

non-unity transfer function on the data in the time and map domains that will filter

the incoming signal. In particular, the PCA-based atmospheric removal process can

act similarly to a high pass filter and remove flux from extended emission near the size

of the instrument field-of-view. It also subtracts a component of the flux from bright

point sources. To enable measurements of the transfer function without needing to

create full simulated datasets, Citlali creates a parallel set of noiseless timestreams

with an injected synthetic source that is reduced in the exact same way as the real

timestreams. All subsequent timestream reduction algorithms other than despiking

are applied and mapmaking of the source is also performed.

The dimensions of the synthetic timestreams are the same as that of the data

timestreams and they use the same pointing solution. The built-in options for the

synthetic source type are either a two-dimensional Gaussian or Airy disk with unit

amplitude. The source is placed at the fitted detector centroids from the APT such

that it will be at the center of its map. The average FWHM for each detector array

is used for the source width but can also be manually entered into the configuration

file to allow for the transfer function effects on extended emission to be determined.

In the standard configuration, the source approximates the point spread function

(PSF) of each band. Synthetic source timestreams with the standard Gaussian source

are plotted in Figure 3.15. A FITS image can also be input to the pipeline which
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Figure 3.15. Synthetic source timestreams generated by Citlali for a number of
detectors. The timestreams include only a 2D Gaussian at the coordinates corre-
sponding to the center of the map and have no added noise.
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will be transformed into a timestream via inverse mapmaking and allows for the

characterization of the pipeline transfer function on more complex source topologies.

3.12.2.4 Despiking

Cosmic rays are a concern at millimeter wavelengths and can introduce large spikes

into timestream data that bias estimates of the timestream variance which are used

in determining map weights. Citlali searches for cosmic ray spikes by differencing

adjacent timestream samples and identifying those that deviate from the mean value

by a user-determined multiplicative factor of the standard deviation of the signal over

the time chunk. This is carried out for each detector iteratively until no further spikes

are found. The number of samples corresponding to the estimated decay time for the

spike is then flagged and not used during atmospheric cleaning or mapmaking. If

timestream filtering is enabled, the size of this region is instead matched to the size

of the filter to prevent other samples from being corrupted.

Citlali can replace the flagged regions with a linear interpolation between the

spiked region endpoints when continuous data is required. Gaussian noise equivalent

to the estimated noise of the unflagged data is added.

3.12.2.5 Timestream Filtering

A bandpass filter is included to filter out noise contributions to the data. These

range from variations at frequencies greater than D/lambda, where no signal of as-

trophysical signal is present, and the low-frequency 1/f noise from the detectors and

atmosphere. Citlali uses a finite impulse response (FIR) filter with a Kaiser-Bessel

window for its bandpass filter (Kaiser 1974). The Kaiser-Bessel coefficients are given

by

wi =
I0(α

√
1−

(
i−N
N

)2
)

I0(α)
, (3.16)
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where I0 is the zeroth order Bessel function of the first kind, N is the length of the

filter, and α is the window shape parameter. For a desired attenuation factor, agibbs,

the shape parameter can be written as

α =



0 if agibbs < 21

0.1102(agibbs − 8.7) if agibbs > 50

0.5842(agibbs − 21.0)0.4 + 0.07886(agibbs − 21.0) if 21 ≤ agibbs ≤ 50.

(3.17)

The coefficients of the impulse response of the ideal filter are

Ai =
sin(2πifupper)− sin(2πiflower)

πi
, (3.18)

with fupper and fupper being the bandpass edge frequencies normalized by the Nyquist

frequency. The final windowed function coefficients are then simply the product of

equations 3.16 and 3.18.

Setting flower or fupper to 0 results in either a lowpass or highpass filter respectively.

Citlali uses the Eigen::Tensor convolution routine to convolve the filter with the

timestream data on a per-time chunk basis. A lowpass filter with a similar setup to

the ones used during TolTEC commissioning is shown in Figure 3.16.

3.12.2.6 Decimation

Citlali can decimate the timestream data by an integer factor to improve the

performance of later reduction algorithms and to reduce the overall memory band-

width of the pipeline. This is useful for generating quick-look data products on the

memory-limited timely analysis workstations. Decimation must be used in conjunc-

tion with a lowpassing filter to prevent aliasing of high-frequency artifacts; together

decimation and lowpassing operate as an anti-aliasing filter. All per-sample vectors
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Figure 3.16. Left: Kaiser Bessel window assuming a windows size of 32 points, an
upper cutoff frequency of 20 Hz, and α = 8.6. Right: Frequency response of the
lowpass filter from the left panel.

and matrices in the time chunk class are decimated in the same way as the timestream

data.

3.12.3 Processed Timestream Reduction Algorithms

As with the previous section, here I outline the main reduction algorithms that

occur after and including the atmospheric filtering in order of operation. These begin

after the transformation of the citlali::RTCData into the citlali::PTCData time

chunk classes. These are managed by the citlali::PTCProc class.

3.12.3.1 Atmospheric Filtering

The contribution from atmospheric thermal emission at millimeter wavelengths

can be many orders of magnitude brighter than the observed astrophysical source

flux, making it the primary source of noise in the raw data, while also having the

added complexity of varying in both time and as a function of position on the sky. It

constitutes the strongest mitigating factor to recovering an unbiased estimate of astro-
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physical signals with ground-based millimeter cameras. It has two key characteristics

which are that it is not stationary like signals of cosmic origin and is correlated across

many detectors. To illustrate this, Figure 3.17 shows detector timestreams before

atmospheric removal, each of which has similar, correlated long wavelength modes in

addition to large amplitude variations. A plethora of techniques have been developed

for atmospheric removal including template-based subtraction, principal component

analysis, most correlated pixel methods, and maximum likelihood mapmaking.

Figure 3.17. Flux calibrated and extinction corrected timestreams from a beammap-
ping observation of J1159+292 for several detectors on the 273 GHz array prior to
atmospheric removal. The negative fluxes occur due to the KID tune procedure which
sets a relative zero point for the fluxes.

Citlali employs the principal component analysis-based approach and is based

on the algorithm developed for the AzTEC data reduction pipeline (Scott et al. 2008).

PCA is a statistical technique that transforms data into a set of orthogonal compo-

nents representing the directions of maximum variance, often used for dimensionality

reduction. First, the timestreams are mean subtracted and the detector covariance
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matrix dTd is calculated from the Nsamples × Ndetectors time chunk matrices d. The

matrix dTd has dimensions Ndetectors ×Ndetectors and encodes the correlations among

the detectors. Samples and detectors flagged in the APT or by the despiker and

timestream variance cuts are zeroed out prior to computation and therefore have no

impact on the elements of the correlation matrix. The covariance matrix is then eigen-

value decomposed using the SPECTRA library which will calculate a user-specified

number of the largest eigenmodes. The timestream matrices are then reconstructed

with these eigenvalues then zeroed out thus removing their contribution from the

data. The largest eigenvalues map to the strongest correlations amongst detectors

within the data, so this method works under the assumption that the atmosphere is

the largest correlated signal across most detectors and that the correlations it intro-

duces do not change on timescales shorter than the length of the time chunk. This

assumption holds well for point sources, where only a handful of detectors observe

the source at a time, though they are still diminished. For extended emission, the

coupling with the atmosphere will be greater and introduce regions of negative or

over-subtracted signal into the maps. An iterative mapmaking technique is required

to recover the subtracted signal in this case when using PCA. The result of apply-

ing this cleaning approach to the detector timestreams of Figure 3.17 is shown in

Figure 3.18, where most of the correlated low-frequency signal is removed, thus pro-

ducing flat, zero-mean source-dominated timestreams. The removal of low-frequency

correlated noise can be seen in the detector timestream PSDs of Figure 3.19.

An important consideration is which subset of detectors to calculate and remove

the eigenvalues from for each chunk. TolTEC presents 3 obvious choices for subdivi-

sion with these being across all detectors and arrays, for each array, or each network.

Large correlations across each network’s detectors may either be averaged out over all

networks on that array or dominate those of other networks which generally necessi-

tates a higher number of eigenvalues to be removed when computed over each array.
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Figure 3.18. Timestreams from the same detectors as those in Figure 3.17, but after
the PCA atmospheric cleaning has been applied on a detector per-network level. The
peaks are the bright point source J1159+292. The negatives occur due to the mean
subtraction before PCA.
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Figure 3.19. Timestream PSDs from the same observation as Figures 3.17 and 3.18.
The black and magenta curves are PSDs from the same individual detectors before
and after cleaning. The red and green curves are the median PSDs of the plotted
detectors for both cases.
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Calculating and removing eigenmodes across all arrays was empirically found to be

less effective on commissioning data than either array or network level cleaning due to

this effect while also being slower due to the increased covariance matrix dimensions.

The eigenmodes calculated from the timestream data are also subtracted from the

synthetic source timestreams to enable corrections for lost flux in the post-mapmaking

filtering stage and for transfer function calculations.

3.12.3.2 Detector Weighting

Citlali calculates a weighting for each detector to be used in the mapmaking

algorithms. For most observations, the weight can be defined as the inverse of the

variance of the unflagged samples in the time chunk for that detector such that noisy

detectors will be given lower weights in the final maps. However, in observations of

bright sources, the variance can be skewed for time chunks that include the source,

resulting in the corresponding pixels in the map being heavily downweighted. This

effect is illustrated in maps constructed from the timestream weights shown in Figure

3.20. For these cases, an estimate for the weight of each detector can be derived from

the beammap observations’s detector sensitivities, S, which can be calculated from

1/(fS × S2), where fS is the timestream sampling frequency after decimation.

3.12.3.3 Detector Flagging

The timestream variances calculated across each detector and time chunk are

used to identify outlier detectors which are then either completely flagged within the

current time chunk or downweighted to the median weight of all detectors not flagged

in the APT. On commissioning data, when using a 3σ upper limit to define outliers,

this usually impacts around 100-200 detectors for each of the arrays. Some examples

of outlier detectors that were flagged during commissioning observations are plotted

in Figure 3.21.
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Figure 3.20. Pixel weight maps from a beammapping observation reduced using
weights calculated from the detector sensitivities (left) and timestream variances
(right). The samples along the scans that see the bright point source are down-
weighted due to the mean subtraction that occurs during timestream reduction.

Figure 3.21. Similar to Figure 3.17, but also including outlier detector timestreams
(gray, light blue, and red) that would normally be flagged during beammapping or
by Citlali’s weight cuts.
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During commissioning, a software issue in the KID resonator identification al-

gorithm was found which resulted in tones with nearby resonator frequencies being

merged and counted as a single resonator. A secondary flagging stage was therefore

added to Citlali which flags resonators whose frequencies are within a user-specified

limit (typically 60 kHz). Examples of nearby tones are shown in Figure 3.22. Ap-

proximately 40% of all detectors were merged with most of these cases (98%) being

flagged during the beammapping reduction. An additional 2% of the total detector

number are typically added on top of the APT flags during science and non-beammap

calibration maps due to the merging. This issue was corrected before the 2024 com-

missioning commenced.

Figure 3.22. Examples of colliding KIDs resonances that overlap one another in
frequency space. Image Credit: Zhiyuan Ma

3.12.4 Mapmaking

Following the mapmaking formalism outlined in (Benton 2015), the relationship

between the timestream data recorded by the instrument and the signal on the sky

can be succinctly expressed in the form
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d = Pm + n, (3.19)

where d is a vector of all timestream data of length Nsamples × Ndetectors, P is the

pointing matrix, m is a vector of length Npixels ×Npixels corresponding to the map of

the sky, and n is the noise contribution to each element of d. The pointing matrix

maps each sample of d to an element or pixel of m and is therefore a large matrix of

Nsamples×Ndetectors×Npixels elements, but is a sparse matrix, with only a few nonzero

elements across each row. The χ2 statistic for 3.19 is

χ2 = (d− Pm̂)TΣ−1(d− Pm̂). (3.20)

In this case, m̂ is an estimate for the map and Σ is the covariance matrix of the noise

vector n. Minimizing this gives the Generalized Least Squares (GLS) solution as

m̂ = (P TΣ−1P )−1P TΣ−1d. (3.21)

If the noise is Gaussian, this is equivalent to the maximum-likelihood solution. Two

difficulties for evaluating this in practice are the challenges of storing the matrices in

memory and inverting them, as well as acquiring a statistically rigorous estimate of

the noise covariance. As an example, for a 30-minute TolTEC beammap observation

measuring intensity only at the full sampling frequency of 488 Hz and with 1′′ pixels

(300′′ × 300′′ maps), P and Σ both contain 6× 1014 elements, requiring 5000 TB of

available memory to hold the full observation.

Mapmakers usually rely on iterative numerical techniques like the Preconditioned

Conjugate Gradient (PCG) method to when attempting to solve Equation 3.21 with-

out storing the zero elements. A simple estimate of the noise can be derived by

assuming it is white, making all elements of Σ other than the main diagonal zero.

The main diagonal can then be estimated from the variance in the timestreams or

from their power spectra. This assumption is not strictly valid owing to the 1/f noise
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contribution from both the atmosphere and the detector themselves which must first

be filtered through highpassing and atmospheric subtraction. This filtering will result

in m̂ being a biased estimator of the source flux.

The noise can also be estimated assuming that it is stationary and that samples

far from one another in time are independent. This makes the covariance matrix Σ

a band-diagonal symmetric Toeplitz matrix with nonzero elements along the main

diagonal and those directly adjacent to it (Benton 2015).

The mapmaking strategy implemented for Citlali is an attempt to strike a bal-

ance between “correctness” and reduction efficiency. A fast mapmaker that can be

run with little computational resources is required for on-site reductions, while a map-

maker that can make use of HPC resources to produce maps sufficient for scientific

analysis is also needed. Citlali therefore includes two mapmaking implementations

that partially reflect this trade-off, an iterative algorithm for timestream and map-

making reductions, and the ability to output partially reduced timestreams to be used

as inputs to standalone maximum-likelihood mapmakers like Minaksi or TOAST3.

3.12.4.1 Naive Mapmaker

The naive mapmaker is the approach derived under the assumption of white

noise. The mapmaking equation can then be solved implicitly by looping through

the timestream data and coadding each detector sample into the map pixel that con-

tains its pointing sample (Figure 3.23). This results in a nearest-neighbor gridding of

the data onto the map array which is equivalent to convolving the timestream data

with the rectangular function Π(t) , which in the Fourier (u,v) plane is given by

F (Π(t)) (u, v) =
sin(πtu)

πtu
× sin(πtv)

πtv
, (3.22)

where t is the pixel size assuming square pixels. A signal map pixel value then becomes

the weighted average of all samples that fall within its bounds:
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Sp(i, j) =

Ndets∑
d=0

(sd · wd · δ(xp − xd))

Ndets∑
d=0

wd · δ(xp − xd)

. (3.23)

In this expression, p is the current pixel, d is the current detector, and δ(xp − xd)

determines if the detector pointing is within the current pixel. The actual timestream

flux is sd. The weights wd are derived as described in Section 3.12.3.2. Maps of

the synthetic source are made in the same way only replacing the timestream data

sample with the source sample for that detector. Weight (inverse error) and coverage

(integration time per pixel) maps are similarly produced.

Figure 3.23. Diagram of the naive mapmaking algorithm. The grid represents
individual pixels in a map and the orange curve is the trajectory of a detector given
the mapping pattern and its offset position. The shaded cell is a pixel that a detector
sample is added into. For the naive mapmaker, only pixels whose boundaries the
sample falls into receive a contribution from that sample.
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The naive mapmaker is the fastest and simplest mapmaking algorithm possible

and is used for the on-site reductions carried out with Citlali and can produce maps

many times faster than the integration time for most observation categories.

3.12.4.2 Jinc Filtered Mapmaker

An aspect of the data not accounted for in the naive mapmaking method is the

presence of receiver or background noise at frequencies higher than the fastest sam-

pling frequency of the sky which for a telescope of diameter of diameter D and de-

tectors sensitive to photon wavelength Λ is λ/D. In conjunction with over-sampled

maps, this produces additional pixel-pixel noise variations that are not representative

of the true noise level and reduce the map S/N. This noise is strictly not due to source

variations and can safely be filtered without removing source flux. This can be ac-

complished during mapmaking by convolving each data sample with a function that

has a unity value below λ/D and is truncated at higher spatial frequencies (Mangum

et al. 2007). The function used in Citlali is

C(r′) = 4× jinc

(
2πr′

a

)
× exp

(
−
(

2r′

b

)c)
× jinc

(
3.81706r′

rmax

)
. (3.24)

The jinc function is J1(x)/x, where J1(x) is the Bessel function of the first kind. The

first jinc function is Fourier transform of the indicator function 1A(x), which is zero

for values larger than 2πr′/a, with r′ being r′ = rD/λ. The parameter a is a scaling

factor. The exponential function with shape parameters b and c is added to dampen

the jinc sidelobes. The final jinc function truncates the response at rmax which is

some multiple of λ/D and is the maximum radius to which the function is calculated.

The parameters a, b, and c control the balance between the S/N across the map and

the response at higher spatial frequencies. The values used in Citlali are a=1.1,

b=FWHM/3, and c=2 where FWHM is the theoretical beam width for each band,
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which is the midpoint of the S/N and frequency response trade-off. The response of

the filter as a function of λ/D for the default TolTEC parameters is illustrated in

Figure 3.24.

Figure 3.24. Response of the jinc filter given by Equation 3.24 for each of the
TolTEC arrays assuming the nominal values of the shape parameters a, b, and c and
rmax = 1.5.

The mapmaker using this convolution is referred to as the Jinc filtered mapmaker

and is implemented as Citlali’s second mapmaker. Each row of the pointing ma-

trix P , in Equation 3.19 will now be populated by additional elements and may no

longer be sparse depending on the choice of rmax. Similar to the naive mapmaker,

Equation 3.21 is solved implicitly in a loop over detectors and samples. To improve

performance, the value of Equation 3.24 is not calculated for all pixels within rmax

for each sample. Instead, Equation 3.24 is precomputed in the pipeline phase 1 as a

matrix that is then multiplied by the data sample value, and added to the same-sized

block of pixels around the nearest pixel, which can make use of Eigen’s vectoriza-
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tion capabilities. This approach is illustrated in Figure 3.25. Regardless, the Jinc

mapmaker remains much more computationally expensive than the naive mapmaker

with most reductions taking 3-4 times longer. The Jinc mapmaker therefore enforces

per-detector parallelization rather than per-time chunk to maximize the number of

compute threads being used and will be most efficient when used for short observa-

tions.

Figure 3.25. Same as Figure 3.23, but for the jinc mapmaker. The sample falls
within the bounds of the darkest shaded cell, but all shaded pixels are added to due
to the convolution of the sample with Equation 3.24. The block of shaded pixels is pre-
computed and multiplied by each sample’s weighted signal value during mapmaking.

Detector weighting and normalization are applied in the exact same manner as

the naive mapmaker. The synthetic source and weight maps are also convolved with

Equation 3.24. A comparison of the differences between the naive and jinc mapmaker

from a commissioning observation of a point source is illustrated in Figure 3.26, where
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the unfiltered naive mapmaker result is characterized by a greater pixel-pixel scatter

relative to the unfiltered jinc mapmaker curve.

Figure 3.26. Elevation slice through maps of a bright point source (J1041+061)
made with the naive mapmaker and the Jinc mapmaker. The filtered maps refer to
those passed through the optimal point source filter (Section 3.13.1).

3.12.4.3 Maximum Likelihood Mapmakers

As discussed in Section 3.7, Citlali can output the data timestreams and their

associated metadata before and after atmospheric filtering. These partially reduced

and flux-calibrated output timestream files can be used as inputs to existing stan-

dalone maximum-likelihood mapmakers that solve Equation 3.21 using iterative PCG

techniques. This allows these external mapmakers to take advantage of Citlali’s

KIDs processing, timestream reduction, and flux calibration which have already

been implemented and optimized while leveraging their own mapmaking capabili-

ties. Two maximum-likelihood mapmakers have been integrated into the TolTEC
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software stack, with these being the Minkasi maximum-likelihood mapmaker (Sievers

2023; Romero et al. 2020) and the TOAST3 software framework (Kisner et al. 2021)

which is also used for atmospheric simulations. These are not replacements for the

naive or Jinc mapmakers, however, as the memory requirements and reduction time

for maximum likelihood mapmakers are typically more than an order of magnitude

higher.

Most of the integration testing and commissioning analysis has been carried out

with the Minkasi mapmaker, with TOAST3 efforts being primarily focused on re-

covering polarized emission. The Minkasi mapmaker is the data reduction pipeline

and mapmaker for the MUSTANG2 project. It uses a singular value decomposition

(SVD) of the data timestreams to determine a smoothed measure of the noise power

spectra.

3.12.4.4 Noise Maps

Citlali can generate noise map realizations using the jackknifing method for

estimating map noise properties and for use in its optimal point source filter. The

weighted samples in a time chunk are multiplied by a vector of randomly generated

± 1 and a map is made for each realization using the same mapmaking algorithm as

the signal map. The vector of random deviates can be held constant or vary with

each detector, with the latter serving to further randomize out most residual map

features to produce lower noise estimates. Example histograms of the distributions

of noise pixels for maps made with the Naive mapmaker and the Jinc mapmaker are

shown in Figure 3.27.

Since many noise maps may be required (possibly >100 for each array and Stokes

parameter), individual maps of every realization are not maintained for both obser-

vations and coadded maps if coaddition is enabled. Instead, the noise samples are

directly added into the coadded map during mapmaking. This approach is not used
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Figure 3.27. Histograms derived from the averages of 10 jackknifed noise map
realizations made with the naive and Jinc mapmakers. The original observation was
a pointing map of J1041+061. The latter shows less variance due to the removal of
high-frequency noise by the mapmaking algorithm. The counts at high flux densities
originate from source leakage into the noise maps.
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for the other map types owing to the significant data compression that occurs dur-

ing mapmaking, thereby making it more efficient to coadd in the map domain when

possible.

3.12.4.5 Polarimetry Mapmaking

Note: Citlali’s polarization reduction remains under active development. As of

the time of this writing, the instrumental polarization has also not yet been measured.

As discussed in 2.1, each pixel on the TolTEC detector arrays consist of two

orthogonal KIDs that are sensitive to a single linear polarization. As a result of sky

rotation during observations, the angle of each KID with respect to the source will

rotate allowing any arbitrary source polarization angle to be measured by the detector

arrays. Following the notation of Benton 2015, the signal measured by a detector t

for a particular sample i can be most generally written as the sum of the signal from

each of the linear Stokes parameters I, Q, and U for the current pixel p of map m as

di,t = Ip + Qp · cos(2θtotal) + Up · sin(2θtotal). (3.25)

The angle θtotal is the relative angle between the KID and the source polarization angle

and is the combination of all angles that produce a full rotation from the detector’s

reference frame to the sky frame. For TolTEC is given by

θtotal = θEl + θPA + 2β + θdetector + θarray + ϵ, (3.26)

where θEl is the source elevation, θPA is the parallactic angle, β is the HWP rotator

angle if installed, θdetector is the KID orientation angle (0, 45, 90, 135 degrees), and

θarray is the installation angle for each array, which is 90 degrees at 273 GHz and

-90 degrees at 214 and 150 GHz. The final angle, ϵ, accounts for any offsets due to

misalignments in the optics or array orientations and must be determined empirically.
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With the introduction of Q and U, the pointing matrix P from Equation 3.21

now contains 3 elements per row. For the implicit solution of the naive and Jinc

mapmakers in Citlali, the elements of the 3 x 3 matrix P TP and the 3 x 1 vector

P Td must now be stored for each pixel. To save memory, Citlali re-uses the map

matrices it creates for the Stokes Q and U maps for P Td and overwrites them following

the solution of Equation 3.21 for each pixel. Full storage of the pointing matrix or

its nonzero elements is not required.

As a result, for polarized reductions, unlike maps only measuring total intensity,

the full association of the resonance frequency measured in a tune observation com-

bined with the fitted source centroid found during beammap to the actual KID on

the physical array must be determined. The two co-centered orthogonal detectors

are deliberately fabricated with resonance frequencies separated from one another to

aid in this identification, with all detectors belonging to 4 different frequency ranges

or “frequency groups” matched to each orientation angle, which are shown in Figure

3.28. Fabrication errors, effects introduced by the optics, and uncertainties in the

beammap fitting will result in a fraction of detectors being unmatched. These are

flagged and not included in the Stokes Q or U maps that Citlali makes.

A simpler, yet very useful, measurement of the Stokes Q and U signals can be

made by producing maps for each of the detector orientations or frequency groups and

differencing those of the orthogonal orientations. Citlali includes the functionality

to output maps of each frequency group for this purpose. This approach, however,

cannot take the per-sample HWP rotation angle into account.

3.12.4.6 Map Coaddition

Citlali assumes that each observation map in the input list is co-centered on

the same sky coordinates when coadding. In this scenario, the zeroth element of the

observation maps is offset from the coadded map zeroth element with
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Figure 3.28. Design KID resonance frequencies plotted against the physical location
in one direction. The frequencies are intentionally separated into different frequency
groups (plotted as colors) offset from one another to allow for easier matching of
measured resonance frequencies to the physical detector location.

δrow = 0.5× (rowscoadd − rowsobs)

δcol = 0.5× (colscoadd − colsobs).

(3.27)

Here, the subscripts coadd and obs refer to the coadded map and observation map

matrices respectively. For an observation signal map Si with a corresponding weight

map Wi, the coadded signal map is

S =

Nmaps∑
i=0

(Si ×Wi)

Nmaps∑
i=0

Wi

. (3.28)

The coaddition of the jackknifed noise maps is handled differently compared to the

map types. Since no noise maps are allocated for individual observation maps when

co-addition is enabled, the calculated noise timestream values are added directly into

the coadded noise map matrices and no map-space coaddition is required. They are

still normalized by the coadded weight maps in the same manner as the others. This

approach is not used for the other map types owing to the significant data compression
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that occurs during mapmaking, thereby making it much more efficient to co-add in

the map domain when possible, particularly when using the slower Jinc mapmaker.

3.12.4.7 Iterative Mapmaker

The effect of the PCA atmospheric cleaning on extended emission is difficult to

qualify or correct for in a quantitative manner and will vary greatly from one source

to another and between multiple observations under different conditions and instru-

mental setups of the same source. For this reason, Citlali includes an iterative

timestream reduction and mapmaker that is similar, yet distinct to the iterative

procedure in the beammap reduction engine to mitigate the effects of its PCA reduc-

tion. Iterative mapmakers have been developed for use with previous instruments like

SCUBA-2 (Chapin et al. 2013), and AzTEC (Liu et al. 2010). The approach imple-

mented in Citlali is based on the AzTEC algorithm and is named Flux Recovery

Using Iterative Techniques (FRUITloops).

Figure 3.29. Diagram of the Citlali FRUITLoops algorithm which wraps the
reduction engine functions in a iterative mapmaking loop. For each iteration, high
significance pixels from the previous iteration’s maps are subtracted and added before
and after atmospheric cleaning.
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Figure 3.29 shows the flow the FRUITloops algorithm. It consists of a loop around

the phase 2 timestream and mapmaking reduction and phase 3 post-mapmaking

stages of the pipeline. Phases 0 and 1 are only performed once. During the first

iteration, each observation is reduced, data and noise maps are generated and nor-

malized, and coaddition is performed if requested. The map files are then written

to disk. On the next iteration, either a S/N, a flux cut, or both are applied to the

previous iteration’s maps (or the maps in a user-specified path) such that all pixels

below those limits are zeroed out. The maps are re-cast into timestream space using

an inverse of the naive mapmaker and subtracted from the raw data timestreams

after flux calibration. Each observation may have its own raw or filtered map or

the coadded versions subtracted to take advantage of the reduced noise level in the

latter. Atmospheric cleaning is performed, and the current iteration noise maps are

calculated before the same pixel values are re-added to the cleaned timestreams. The

remaining processes are then applied as in the first iteration. This is then repeated

until a maximum number of iterations is reached.

Provided reasonable S/N and flux limits are used the source flux in the maps will

converge with a much higher level of recovery than with a single iteration and the

over-subtracted negative regions PCA typically introduces will be minimized. The

optimal selection of the free parameters will depend on the source morphology and

size, the noise floor, and the relative difference in magnitude between the source and

atmospheric amplitudes. Bright extended emission from sources like the Crab Nebula

(Messier 1) will require more iterations to converge.

3.13 Post-Mapmaking

The processes that occur after maps have been made and normalized include

source fitting for the citlali::pointing reduction engine, map PSD and histogram

calculation, optional map filtering, and file output. These steps are all enclosed
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within the FRUITloops mapmaking iteration and will be carried out and their outputs

generated for every observation and iteration.

3.13.1 Optimal Point Source Filter

An alternative, more mathematically rigorous scheme to iterative mapmaking for

recovering point source flux lost during atmospheric cleaning is to filter the maps

using the synthetic source maps as the convolution kernel or filter template. The

default synthetic sources are derived from the average of 2D Gaussian fits to each

detector’s map of the beammapping point source and are therefore representative of

the PSF of each band. The synthetic source timestreams are subject to the same

atmospheric cleaning as the data and can be scaled to their original unit amplitude

to correct for the flux loss incurred by the PCA approach. Under the conditions that

the pixel noise is independent and white, this is equivalent to fitting the signal map

to the synthetic source and deriving the best-fit amplitudes (Scott et al. 2008).

Citlali uses the GLS algorithm developed out in (Perera et al. 2013), whose

notation I repeat below. It works on two assumptions. First, the PSF is assumed to

be constant across the field. Second, the pixel-pixel noise correlations are a function

of the distance between two pixels only. In this case, for pixel p, the χ2 statistic to

be minimized in the optimal filter is

χ2
p =

NPix∑
k,l=1

(d(xk)− spf(xk − xp)Wkl [d(xl)− spf(xl − xp)]) , (3.29)

where (k,l) is the row and column of the current pixel in the summation, d is the

unfiltered map at (k,l), sp is the amplitude of the convolution kernel, and f(xl − xp)

is the value of the convolution kernel at (k,l) when centered at p. The value Wkl is

the inverse covariance of the pixel (k,l) and is given by

Wkl =
1

N2
Pix

1

ϵ(xk)

(∑
xk,xl

ϵ(2πjka(xk−xl))

V 2(ka)

)
1

e(xl)
, (3.30)
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with ϵ(xk) and ϵ(xl) being the noise standard deviations at (k,l) and V 2(ka) is the

normalized PSD of the data. The inclusion of Wkl allows for maps with uneven

coverage to be filtered. Owing to the presence of 1/f noise, the PSD will not be

flat, and the covariance matrix then becomes band diagonal. Due to the division by

V 2(xk) the noise is whitened, and pixel-pixel noise will be filtered. The maximum

likelihood solution for sp that minimizes Equation 3.29 then becomes

Sp =
∑
k,l

(
Wkld(xk)f(xl − xp)∑

k,l(Wklf(xp − xk)f(xp − xl))

)
=

Np

Dp

. (3.31)

The convolution kernel used when filtering maps with point sources is usually

chosen to be a rotationally symmetric version of the synthetic source map to account

for potential variations in the PSF across the field (Scott et al. 2008). The PSD is

derived from the average power spectra of the jackknifed noise realization maps. The

numerator Np and denominator Dp are solved separately in Citlali and combined,

with the latter being solved iteratively. The denominator requires a large number of

FFTs to be calculated and can therefore become computationally expensive for large

( 1 deg2) maps. Citlali employs the FFTW library for the 2D FFT calculations in

conjunction with the library’s multi-threaded OpenMP-based options.

A consequence of the map filtering is that the beam in the filtered maps is broad-

ened relative to that of the raw maps due to the convolution with the synthetic source.

Citlali filters the signal, weight, synthetic source, and all noise maps. The filtering

kernel is not restricted to only the simulated PSF map but can also be used with

more complex kernels. Citlali permits 2D Gaussian and Airy patterns of arbitrary

widths to be used for the recovery of more extended emission. If a FITS image is

used to create the synthetic source maps those will also be used here.

Figure 3.30 shows maps produced by the unfiltered and filtered naive and jinc

mapmakers. Pixel-pixel variations are evident in the filtered naive result but largely

reduced when using the other approaches. Filtering in conjunction with either the
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Figure 3.30. Maps of the source J1041+061 made with the naive (top row) and Jinc
(bottom row) mapmakers as well as with (right column) and without (left column)
the optimal point source filter.
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naive or Jinc mapmakers are nearly identical. The recovery of lost subtracted flux and

the broadening of the beam can be observed in an elevation slice through a synthetic

source map in Figure 3.31.

Figure 3.31. Elevation slice through raw and Wiener filtered maps made from the
synthetic source timestreams with the naive and Jinc mapmakers.

3.14 Benchmarking and Performance

The memory footprint of Citlali is determined primarily by the observation and

coadded map arrays, with the total memory allocation depending upon the pixel size,

map dimensions, and the number of maps. The latter varies based on the type of

reduction, the number of detector arrays enabled, whether noise maps are requested,

and whether Stokes Q and U maps are being generated. Temporary memory alloca-

tions from the reduction and mapmaking stages will incur additional overhead, with

the largest contribution to temporary memory coming from the atmospheric clean-

130



ing algorithm. This is due to its computation of detector correlation matrices and

eigenvalue decompositions.

For an equivalent reduction setup and observation parameters, reductions using

the citlali::beammap mode will require the most memory compared to science or

pointing modes. This higher demand stems not only from the fact that each detec-

tor’s signal and weight maps are stored in memory but also because a full copy of the

partially reduced timestreams is needed for the iterative reduction algorithm. Obser-

vations are typically decimated where possible, so the overhead from the timestream

copy is usually less than that of the raw data. Memory usage was measured for point-

ing, beammap, and two science observations—Messier 1 and Monoceros R2—across

different thread counts. Details of the observation configuration for the science re-

ductions are provided in Section 4.2 for Messier 1 and in Section 4.3 for Monoceros

R2. The observations were processed using the currently adopted default reduction

parameters, as determined from commissioning observations. The results for a single

thread are presented in Table 3.1. There is little variation with an increased number

of threads, indicating that the memory footprint is dominated by the memory allo-

cated for maps and timestreams outside of parallel regions and that the I/O speed is

roughly equal to or less than the reduction time of individual time chunks.

Citlali has two potential computational bottlenecks: file I/O and memory band-

width. Due to Citlali’s data streaming model, while one time chunk is being

read from the disk, one or more are being reduced. Therefore, if the disk read

speed is slower than the reduction time for a single time chunk within the initial

grppi::farm instance, the pipeline will be I/O bound. An I/O bottleneck is more

likely in citlali::beammap reduction mode, due only to the raw time chunk pro-

cessing being performed while the raw data is read from disk.

Most stages in Citlali are, in principle, embarrassingly parallel. However, there

is a parallelization overhead as more processors are utilized, meaning that reduction
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Table 3.1. Single Threaded Memory Overhead for Citlali.

Observation Type Integration Time Map Maker Memory Used
Pointing 60 sec Naive 3.25 MB
Pointing 60 sec Jinc 3.32 MB

Beammap 30 min Naive 26.68 GB
Messier 1 12 min Naive 1.17 GB
Messier 1 12 min Jinc 1.15 GB

Monr2 10 min Naive 546.53 MB
Monr2 10 min Jinc 368.12 MB

time will not scale linearly with processor count. Particularly for citlali::beammap

reductions, parallelized regions must necessarily be divided during the transformation

from the time domain to map space, which limits the code’s scalability. Additionally,

since parallelization primarily occurs across time chunks, the number of time chunks

sets an upper limit on the maximum number of cores that can be employed.

Figure 3.32 illustrates the speed-up factors, defined as the ratio of the reduction

time for one thread to that of other thread counts, for different reduction modes.

Figure 3.33 shows the actual reduction times for different numbers of cores. Only

physical compute threads were used. The Monoceros R2 observation’s naive reduction

shows the greatest speed-up factor due to its 22 time chunks, which facilitates easy

parallelization across many threads. The Messier 1 naive reduction shows lower gains

because it is a coaddition of multiple observations that are reduced sequentially.

For pointing observations with 10-second time chunks, each has at most 6 chunks,

meaning that no efficiency gains are achieved beyond approximately 6 threads. The

speed-up factor for citlali::beammap reductions is somewhat deceptive; its runtime

is extended by sequential processing steps, including preliminary observation setup

tasks like timestream alignment and map allocation, as well as file output time. For

the parallelized stages, the speed factor is approximately 2.5 times for 28 threads. Jinc

mapmaker reductions show poorer speed-up factors compared to the naive mapmaker,

owing to a lower level of parallelization. Only the mapmaking stage itself is multi-
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threaded with Jinc mapmaking enabled. However, the current implementation of

per-detector parallelization for the Jinc mapmaker still yields shorter reduction times

compared to per-chunk parallelization, especially for observations with significantly

fewer chunks relative to the number of available threads.

Figure 3.32. Speed up factor for reductions with Citlali of different observation
types and mapmakers using different numbers of compute cores. Results are for a
single mapmaking iteration.

The reduction time for the iterative mapmaker scales from the single-iteration

reduction times in an approximately linear fashion with the number of iterations,

although some initial setup processes are not repeated.
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Figure 3.33. Similar to Figure 3.32, but plotting the actual reduction time as a
function of number of cores used. Results are for a single mapmaking iteration.
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CHAPTER 4

TOLTEC COMMISSIONING MAPS

This chapter presents results obtained from Citlali data reductions and sub-

sequent analyses of TolTEC commissioning observation data acquired during the

instrument’s commissioning runs. I focus primarily on maps of two extended Galac-

tic sources and the beammap used between them. All maps and derived quantities

shown here are preliminary and are still undergoing scientific verification. They do

not represent final data products and should not be used for scientific analyses.

As of the time of this writing, two full commissioning runs have been completed

with TolTEC, consisting of an initial run of 8 nights between June 16, 2022 and July

7, 2022 and a second phase of 13 nights between December 9, 2022 and December 23,

2022. An additional 4 observing nights were carried out in the spring of 2023. No

observations were performed for the remainder of 2023 due to poor weather conditions,

a wildfire at the base of Sierra Negra, and an extended 6-month power outage to the

telescope as a result of electrical storm damage. Following the restoration of power,

commissioning observations resumed in late March 2024.

As it was the first time observing the sky with TolTEC on the LMT, the June-July

2022 commissioning run focused primarily on instrument setup and characterization

as well as the integration of the data reduction and visualization software packages

into the telescope’s computing infrastructure. These tests included procedures to

confirm the alignment of the various components of the warm and cold optics chain,

verifying the resonator identification algorithms given the background loading condi-

tions in the LMT receiver cabin, and exercising the beammapping, focus, astigmatism,
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and pointing correction pipeline reduction modes. The summer months are charac-

terized by much higher humidity and increased precipitation than the winter months

and are suboptimal for observations below 3 mm. For this reason, combined with the

intention to improve the noise characteristics of the arrays, only bright point sources

were observed in this run.

Following extensive software upgrades and hardware modifications informed by

the findings of the June-July commissioning run, the December 2022 observing run

drew targets from a more diverse list of sources, including extended objects and

point source fields. A list of the observed non-point source objects is given in table

4.1 which were chosen primarily based on their availability at different times of the

night and the likelihood of detection. Of the 5 observed, 2 were detected, with these

being the supernovae remnant Messier 1 and the Monoceros R2 GMC. Both sources

are very bright at millimeter wavelengths, making detections relatively trivial even

under poor observing conditions and noise environments. The face-on spiral galaxy

Messier 74 and the galaxy cluster MACS J0717.5+3745 were not detected due to

detector network settings that caused higher-than-expected timestream noise. The

non-detection of sources in the COSMOS field was the result of a coordinate error.

In addition to extended emission, commissioning tests with the HWP installed

were also undertaken during the December run. Polarization calibrator sources 3c147

and 3c286 were observed in three different modes: without the HWP, with the HWP

installed but not spinning, and with a spinning HWP.

Analysis and scientific verification of timestream data and maps from the Decem-

ber commissioning run was carried out in 2023. Primary goals were to explore the

intrinsic data quality to ascertain if further hardware adjustments were necessary, de-

termine the optimal data reduction parameters, and to compare source flux recovery

and calibration in maps produced by Citlali’s internal mapmakers and the Minkasi

maximum likelihood mapmaker for the different source categories.
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Table 4.1. Commissioning Observation Parameters

Source RA Dec Num Obs Detected?
Messier 1 5h34m31.95s 22d00m52.15s 7 yes
Monoceros R2 6h07m46.3s 6d23m09s 5 yes
Messier 74 1h36m41.7s 15d47m01.1s 2 no
COSMOS 10h00m30s 2d12m20.00016s 4 no
MACS J0717.5+3745 7h17m30s 37d45m00s 2 no

4.1 Beammaps

The beammapping observing strategy is outlined in Section 2.5.3 and the data

reduction approach is described in Section 3.12.1.3. Beammapping observations were

taken of the Solar System planets Saturn, Neptune, and Uranus, as well as Submil-

limeter Array Calibrator List targets such as 3c279, 3c84, BL LAC, and OJ287. No

other Solar System bodies such as asteroids or dwarf planets were observed due to

lack of observability during the commissioning runs and because of constraints from

the observing and instrument testing schedule.

The quality of the beammaps varied considerably between commissioning nights

due to ongoing instrument and optics adjustments. During regular operations, at least

two beammaps will be acquired each night. For commissioning, however, an effort

was made to obtain the best possible Array Property Table and use it across different

observing nights and for the reductions of the extended sources. This was done to

streamline observations and instrument testing. A beammap taken on December 19,

2022 (MJD=59932) of the source J1159+292 (Ton 599 or 4C+29.45) was selected

owing to its proximity to the observations of the COSMOS field and the quality of

the raw data and weather conditions. The properties of J1159+292 are given in

Table 4.2. The source is a flat spectrum radio quasar and is highly variable (Rajput

and Pandey 2021) in both total intensity and polarization fraction and is frequently

monitored by the SMA at 870 µm and 1.1-1.4 millimeters. It undergoes frequent

flaring on short timescales with flux variations of 200-300% (Figure 4.1), making

absolute flux calibration difficult. The flux in each of the TolTEC bands was estimated
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by measuring the spectral index from the most recent SMA observations at 1.1 mm

and 850 µm and extrapolating to longer wavelengths. Uncertainties are expected to

be at the 15% level.

Figure 4.1. Plot of the flux at 870 µm and 1.1 mm made by the SMA over time of the
radio galaxy J1159+292 observed in beammap observation 102518. Figure reproduced
from: http://sma1.sma.hawaii.edu/callist/callist.html?plot=1159%2B292

Figure 4.2 shows the on-sky detector offsets from the APT produced by the

beammapping reduction after flagging and rotation to the horizon. Timestream re-

duction steps include lowpassing at 20 Hz, decimation to 40 Hz, and atmospheric

cleaning with 5 eigenvalues. The naive mapmaker was used to generate the maps

used in the final fitting. The beammapping reduction was run for a total of 10 iter-

ations. The network alignments are rotated with respect to the design APT (Figure

2.4) owing to the installation angles of the arrays. Networks 6 and 10 were disabled

for this observation. Detector flagging was performed during reduction with limits

on the beam centroids, FWHMs, S/N, and sensitivity, followed by a small level of
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manual flagging. The statistics for the detectors across each network are given in

Table 4.2. The median percentage of flagged detectors for 102518 for all networks is

42.3% and is primarily due to the now-corrected software bug that resulted in nearby

resonators being merged.

Table 4.2. J1159+292 Parameters

Parameter Value
Observation ID 102518
RA 11h59m31.8339s
Dec +29d14m43.826s
z1 0.725
F273GHZ 3.426 Jy/beam
F214GHZ 3.475 Jy/beam
F150GHZ 3.676 Jy/beam
1 Rajput and Pandey 2021

Maps of the beams derived from coadding all detectors are plotted in Figure 4.4.

Sidelobe feature are visible across all 3 arrays and have similar structure within each

indicating that they are the result of residual deformations in the primary mirror

surface as opposed to being introduced by the reduction proceedure or detector array

characteristics. Two important results from the beammapping analysis include the

confirmation that the arrays have the same footprint on the sky and that they are

co-aligned. The array extents closely match the predicted FOV of 220′′ given the

detector spacing and array dimensions. This was previously confirmed during in-lab

testing following a fix to the dichroic filters in the cold optics (Wilson et al. 2020).

The distribution of the flux calibration factors across the arrays and histograms of

the fitted beam FWHMs in both Azimuth and Elevation are illustrated in Figure 4.3.

The median log(FCF) values for each array are 9.04 ± 0.08, 8.53 ± 0.11, and 8.41 ±

0.09 in units of mJy/beam/x with x being the KIDs scattering parameter. Variations

of the FCF across different networks are visible due to varying readout settings and

detector quality factors. There is no significant dependence in either axis or with
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Figure 4.2. Fitted azimuth and elevation offsets after rotation to the horizon from
the APT of J1159+292 for the 3 TolTEC arrays. The colors represents the detector
readout networks. Networks 6 and 10 were disabled. Detectors flagged by Citlali

during the beammapping reduction are not plotted.
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distance from the array center which would be indicative of optics misalignment. An

asymmetry is observed, however, in the beam widths with a slight broadening in the

scan direction. The average FWHMs and fraction of unflagged detectors are listed

in Table 4.1. A narrowing of the beam in the scan direction can occur from the

atmospheric filtering stage of the data reduction pipeline, but this is mitigated by the

iterative beammapping procedure. Therefore, this effect is likely due to a residual

focusing offset. The median beamwidths for each array are 6.07 ± 0.37′′ 7.51 ± 0.36′′,

and 10.74 ± 0.31′′ which are 1′′ larger than the theoretical instrument beam FWHMs.

Example cutouts of random detector maps from each array are plotted in Figure 4.5

and show a range of beam morphologies. Each has been smoothed with a Gaussian

beam with σ = 3′′.

Table 4.3. Beammap Network Statistics

NW Found Good Bad Good % Az FWHM El FWHM
[arcsec] [arcsec]

0 682 391 291 57.33 6.56 5.69
1 518 328 190 63.32 6.42 5.73
2 557 256 301 45.96 6.40 5.38
3 565 328 237 58.05 6.53 5.53
4 568 285 283 50.18 6.82 5.57
5 515 303 212 58.83 6.62 5.53
6 N/A N/A N/A N/A N/A N/A
7 579 329 250 56.82 8.15 7.04
8 489 352 137 71.98 7.96 6.89
9 573 341 232 59.51 8.02 7.00
10 N/A N/A N/A N/A N/A N/A
11 524 276 250 52.67 11.27 9.82
12 634 366 268 57.73 11.30 10.39

total 6204 3555 2651 57.30 N/A N/A
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Figure 4.3. Left column: Fitted detector offsets as in Figure 4.2, but with the flux
calibration factor plotted as color. Right column: Fitted azimuth (x) and elevation
(y) beam FWHMs for each unflagged detector.
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Figure 4.4. Beam profiles for each array made from coadding all detector maps using
the citlali::pointing reduction engine, using 10 iterations of the naive mapmaker.
The color scale is nonlinear due to the large dynamic range between the flux of the
peak and sidelobes.
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Figure 4.5. Beam profiles from random detectors selected from each TolTEC array
(columns). Map units are the raw timestream KID detuning parameter x. Maps have
been smoothed with a Gaussian with σ = 3′′.

4.2 Messier 1

The Crab Nebula (Messier 1 or Tau A) is an extremely bright (∼200 Jy within

TolTEC’s bands) supernovae remnant that is dominated by nonthermal emission in

the form of synchrotron radiation (see Bühler and Blandford 2014 for a review). It has

been extensively observed from gamma ray to radio wavelengths and is ideal for com-
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missioning observations of millimeter wavelengths owing to its well-constrained spec-

tral index, high polarization fraction, and nearly constant polarization angle across

23-353 GHz. Furthermore, it has an angular scale of 5′× 7′ making it an optimal

target for testing the flux recovery of data reduction and mapmaking pipelines for ex-

tended emission. The nebula has been recently observed in total intensity and Stokes

Q and U at 150 GHz with both NIKA (Ritacco et al. 2018) and at 260 GHz with

NIKA2 (Ritacco et al. 2022).

A total of 7 observations each centered at RA=5h34m31.95s and Dec=22d00m52.15s

were taken of the Crab Nebula with the parameters of each being listed in Table 4.2.

While measurements of the polarized signal were intended, the HWP was not installed

for these observations due to time and observing constraints. The first 6 observations

were taken on December 16, 2022, and consist of a set of Raster maps with short

integration times of 2 minutes with every second map being rotated by 45 degrees

to enhance cross-linking between scans in the final coadded maps. The Raster map

dimensions are selected to be much larger than the size of the source to allow for a

better estimate of the background loading and to improve the removal of the atmo-

sphere in the PCA algorithm. The average τ225GHz across all 6 maps was 0.048. The

final observation is a 23-minute Lissajous map over a smaller field around the source

taken on December 19, 2022. The measured opacity was slightly higher than for the

Raster maps at 0.053 at 225 GHz. Analysis was focused on the Raster maps for data

reduction and analysis in this work due to the larger field.

Figure 4.6 shows total intensity maps of the Crab Nebula in each of TolTEC’s

3 bands made from the coaddition of the 6 Raster maps. The data was reduced

with Citlali’s science reduction engine and using the pipeline’s Jinc filtered itera-

tive mapmaker and 1′′ pixels. The APT from the beammap of J1159+292 was used

for the final map analysis. Pointing offsets were determined from a pointing obser-

vation (LMT Observation ID=102284) of J0510+180 carried out immediately prior
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Table 4.4. Messier 1 Observation Parameters

Observation Mapping Map Angle Integration

ID Pattern Size Time

[arcmin] [deg] [min]

102285 Raster 17 x 15 0 2.2

102286 Raster 17 x 15 0 2.2

102287 Raster 17 x 15 45 2.2

102288 Raster 17 x 15 45 2.2

102289 Raster 17 x 15 90 2.2

102290 Raster 17 x 15 90 2.2

102487 Lissajous 10 x 10 N/A 23

to the Raster maps with the measured offsets being (Az,El) = (-4.62”, 3.61”). The

timestreams were lowpassed at 50 Hz and decimated by a factor of 3, followed by

atmospheric cleaning with the largest 10 eigenvalues being removed. Detectors were

weighted by the APT detector sensitivities instead of the timestream variances due to

the high source flux. Detectors with variances less than a factor of 3 times the median

were downweighed to the median value. The mapmaker was run for 150 iterations

with a S/N cut of 2. The resulting maps were tested for convergence with an average

difference in flux of < 1% between 100 iterations and 150 iterations being measured.

No post-mapmaking Wiener filtering was performed as the iterative mapmaker serves

the role of correcting for flux lost during atmospheric filtering.

For each array, 10 jackknifed noise map realizations were also made using the Jinc

filtered mapmaker and give 7.8 mJy/beam, 8.23 mJy/beam, and 8.04 mJy/beam

for the average map RMS at 273, 214, and 150 GHz respectively. The reduction was

repeated with the same reduction parameters except for replacing the Jinc mapmaker

with the naive mapmaker, which gives map RMS values of 23.97, 29.67, and 20.52
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Figure 4.6. Maps of the Crab Nebula made with 150 iterations of Citlali’s iterative
Jinc mapmaker.
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mJy/beam. The difference is attributable to the removal of high-frequency pixel-pixel

noise by the Jinc mapmaker.

Preliminary aperture photometry was performed on the Citlali iterative Jinc

maps to compare flux measurements from existing literature sources. The analysis

was carried out by Artyom Tanashkin with additional support from Yuri Shibanov

and Aida Kirichenko. Figure 4.7 shows the different-sized apertures used for esti-

mating the flux, with the background remaining nearly zero for all aperture radii

considered. The SED of the Crab Nebula between 10-106 GHz was obtained from

Arendt et al. 2011 and is shown in Figure 4.8 with the TolTEC fluxes overplotted.

The 214 GHz and 150 GHz bands are in good agreement with the measured SED

while the 273 GHz is systematically higher. The deviation may result from both

calibration uncertainties and suboptimal reduction parameter settings. The 273 GHz

array includes the largest contribution from the foreground atmosphere of the 3 bands

and may not be entirely subtracted. Flux calibration uncertainties carry over from

the beammap source dominating the measurement errors at the 15% level.

The recovery of the source flux in the Crab Nebula maps is significantly affected

by the atmospheric filtering stages in Citlali due to its bright and extended nature.

The right column of Figure 4.9 shows the maps produced by the initial iteration of

the Citlali Jinc filtered mapmaker, highlighting significant flux lost and regions of

negative flux introduced by the PCA algorithm. To test how effectively the iterative

mapmaker recovers the source flux, the maps were also reduced with the Minkasi max-

imum likelihood mapmaker to compare results from the radically different mapmaking

approaches. This analysis was carried out by Joseph E. Golec. The timestreams from

Citlali were output after only having the KIDs model solving, flux calibration, and

extinction correction applied to them before being passed into Minkasi. The Precon-

ditioned Conjugate Gradient solver was run for 50 iterations. After the PCG solution

was reached, the resulting maps were subtracted from the timestreams to generate
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Figure 4.7. Top row: The same maps as in Figure 4.6, but with the apertures used
to calculate the integrated flux (red) and background overplotted. Multiple apertures
were tested to estimate the background, but each gave similar results. Bottom Row:
Maps plotted with a different colormap to highlight the flat background. Figure and
analysis carried out by Artyom Tanashkin.
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Figure 4.8. Figure reproduced from Arendt et al. 2011. Crab Nebula SED with
the integrated fluxes from the Citlali iterative Jinc maps overplotted (red points).
Error bars represent the 15 % calibration uncertainties. Figure editing and analysis
carried out by Artyom Tanashkin.
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a new noise estimate, and the mapmaker was re-run. This process was repeated 30

times, with convergence being reached after around 10-15 iterations. The Minkasi

maps from the final iteration are shown in the left column of Figure 4.9. Overall,

Minkasi outperforms earlier iterations of both Citlali’s naive and Jinc mapmaker

but underpredicts the flux relative to the final converged Citlali maps. There are

also extended regions of negative pixels in the Minkasi maps that surround the source,

with the 150 GHz band being the most affected. Figure 4.10 plots the flux difference

between the 150 iteration Citlali Jinc map and the Minkasi maps for each pixel ver-

sus the Citlali flux in the 3 maps after reprojecting the latter onto the same WCS

using the Python package reproject1. The 273 GHz and 150 GHz demonstrate sim-

ilar behavior with the highest flux pixels showing the greatest discrepancy between

the two mapmakers. There is little variation of the flux difference with the Citlali

flux in the 214 GHz band though there remains a positive offset. The distinction

between the 214 GHz band and the others likely arises at least in part due to the

higher noise properties of that array during observing.

The origin of the negative flux in the Minkasi maps is not yet well understood. As

a maximum-likelihood mapmaker, it does not utilize the same atmospheric removal

approach as Citlali such that a bias should not be introduced through filtering.

It is plausible that the bright nature of the source affects the noise estimate or that

pixel-pixel noise and timestream and instrument gain variations result in a poor flux

model estimate (Næss 2019).

Preliminary Stokes Q and U maps of the Crab Nebula are shown in Figure 4.11.

As the HWP was not installed while observing and since the polarized reduction

mode of Citlali is still under development, each Stokes map is made by differencing

the maps generated from the different detector orientations. In this approach, the

1https://reproject.readthedocs.io/en/stable/
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Figure 4.9. Left column: Crab Nebula maps made with the Minkasi maximum
likelihood mapmaker. Minkasi maps were generated by Joseph E. Golec. Right
column: Maps made from a single iteration of Citlali’s Jinc mapmaker.
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Figure 4.10. Differences between the Crab Nebula fluxes from the Citlali 150
iteration Jinc maps and the Minkasi maps plotted against the Citlali map’s fluxes
for each pixel in the maps. The colors represent the density of the points from a
Kernel Density Estimate. The black line is the zero-line where the Citlali and
Minkasi fluxes would be identical.

Stokes Q map is derived from the subtraction of the detectors at 45 degrees (frequency

group=1) from those at 135 degrees (frequency group=3) and the Stokes U map is

the difference between the 90 degrees (frequency group=2) detectors and those at

0 degrees (frequency group=1). This convention was chosen to match the sign of

the emission in the Stokes Q and U maps from observations with NIKA at 150 GHz

(Ritacco et al. 2018). The data reduction was performed in the same way as the total

intensity maps, using the Citlali iterative Jinc mapmaker for the same number

of iterations. The resonance frequencies and APT positions were matched to the

physical detector locations by hand with 25, 17, and 5 unflagged detectors remaining

unmatched at 273, 214, and 150 GHz. Overall, the morphology of the Stokes Q

and U map at 150 GHz is in good qualitative agreement with the corresponding

NIKA maps. Owing to the first-order nature of the polarization reduction method

and the uncertainty regarding polarization angle systematics, I do not compare the

polarization fraction or orientation.
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Figure 4.11. Preliminary Stokes Q (left column) and U (right column) maps made
with Citlali’s iterative Jinc mapmaker by differencing detectors from the different
frequency groups. The HWP was not installed for these observations.
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4.3 Monoceros R2

The Monoceros R2 (hereafter MonR2) Giant Molecular Cloud is a large, nearby

star-forming region at a distance of 893 ± 42 parsecs (Dzib et al. 2016; Jiang and

Hillenbrand 2024). The entire cloud structure is extended over a field of 3 x 6 de-

grees and is characterized by bright reflection nebulae connected through filamentary

structures (Pokhrel et al. 2016). Unlike the Crab Nebula, dust reprocessing and

nonthermal free-free emission are the primary source of photons from MonR2. The

region is similarly useful for testing the recovery of extended emission at scales near

or larger than the instrument FOV, while also offering small-scale structures that are

advantageous for confirming pointing alignment. MonR2 was observed at 273 GHz

with AzTEC when it was mounted on the LMT when the telescope was in its 32 m

configuration in 2014 and 2015 (Sokol et al. 2019).

MonR2 was observed in 5 separate observations with TolTEC which were taken

in succession to one another on December 21. 2022. A summary of the observation

properties is given in Table 4.3. They consist of two Lissajous maps, two Raster maps,

and a single Rastajous pattern. The instrument sampling rate was varied between the

observations due to the range in mapping speeds used. The Lissajous maps observed

a smaller field around the brightest central region of MonR2, whereas the Raster

maps covered a 1 square-degree field. The Rastajous map was designed to be in

between the two sizes. Of the 5 observations, the first Lissajous map had the highest

data quality and was used for subsequent analyses. The mapping speed of the Raster

maps was erroneously set too high resulting in the maps being under sampled thus

filtering out much of the extended structure. The second Lissajous and Rastajous

maps show signs of being out-of-focus with the sources being stretched in the scan

direction. Two pointing observations (102580 and 102586) were acquired before the

first Lissajous and after the final Rastajous observation. The beam in the second

pointing observation is very extended in Elevation with an axial ratio greater than
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approximately 1.4. The mean pointing offset from both observations was (Az,El)

= (1.02′′, 3.82′′). The optical depth at 225 GHz for all observations varied between

0.058-0.06.

Table 4.5. MonR2 Observation Parameters

Obs RA Dec Map Map Map Integration
ID Pattern Size Speed Time

[arcmin] [arcsec/s] [min]
102581 6h07m46s 6d23m09s Lissajous 8 x 8 50 10.0
102582 6h08m00s 6d20m00s Raster 60 x 60 450 10.8
102583 6h08m00s 6d20m00s Raster 60 x 60 450 10.8
102584 6h07m46s 6d23m09s Lissajous 8 x 8 50 10.0
102585 6h07m60s 8d34m50s Rastajous 15 x 15 50 8.4

Data reduction with Citlali for the first Lissajous map was carried out using the

same manner as for the Crab Nebula reduction, with the same parameters chosen for

lowpassing, decimation, cleaning, and detector weighting being used. The iterative

Jinc mapmaker was run for 100 iterations with an S/N cut of 2.0. The APT from

beammap of J1159+292 was again used for detector offsets and flux calibration. Af-

ter comparing with the AzTEC 273 GHz, a residual pointing offset remained after

applying the pointing corrections from the nearby pointing observations. An offset of

(Az,El) = (-4.52, 4.28) was instead applied to line up the bright central source with

the AzTEC map. The final maps are shown in Figure 4.12 which have average RMS

values of 4.8, 4.7, and 2.3 mJy/beam. As with the Crab Nebula, the naive mapmaker

reduction has higher RMS values at 13.5, 16.9, and 11.6 mJy/beam.

A shift of approximately 4′′ in the position of the central bright source can be

observed between the three TolTEC bands (Figure 4.13). This effect cannot be due to

misalignment between the three arrays as beammapping and point source calibration

observations confirm that the optics are aligned at the sub-arcsecond level. This is

possibly the result of free-free emission constituting a greater fraction of the source
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Figure 4.12. Maps of MonR2 made with 100 iterations of Citlali’s iterative Jinc
mapmaker. The color scale is nonlinear to highlight the fainter, filamentary features
in the maps.
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flux at 150 GHz than at 273 GHz where dust thermal emission will be the dominant

emission mechanism.

I compare the Citlali 273 GHz map to the AzTEC 273 GHz map from Sokol

et al. 2019 in Figure 4.14. The data reduction for the AzTEC map was similar

to that of the Citlali maps with PCA also being used for atmospheric filtering.

Histograms of the pixel flux distribution are presented in Figure 4.15. Two important

distinctions between the reduction, however, are that the AzTEC maps do not use an

iterative mapmaker nor are they filtered to recover flux lost from atmospheric cleaning.

Instead, a naive mapmaking algorithm was used, and the maps were smoothed with a

Gaussian filter from their native resolution of 8.5′′ to 12′′. Consequently, the recovered

flux is much less than that of the Citlali map, and regions of negative flux are

present. The TolTEC map recovers a peak flux a factor of 1.62 higher than the

AzTEC map. The AzTEC map has a depth of 5.96 mJy/beam after converting to

the TolTEC 273 GHz beamsize.
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Figure 4.13. Zoom in on the bright central region of the MonR2 maps from Figure
4.12. The white dashed lines are at the peak of the source at 273 GHz.
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Figure 4.14. Left panel: Same 273 GHz map as in the top panel of Figure 4.12, but
plotted on the same color scale as the AzTEC map on the right panel. Right Panel:
AzTEC map of MonR2 at 273 GHz from Sokol et al. 2019.

Figure 4.15. Histograms comparing the flux distributions in the Citlali 100 iter-
ation Jinc map of MonR2 with that of the AzTEC map plotted in Figure 4.14.

Finally, I also created maps with the Minkasi maximum likelihood mapmaker for

comparison. The data reduction steps with Minkasi were identical to those used in
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the reduction of the Crab Nebula. The Minkasi maps are plotted in Figure 4.16.

Similar negative features to the Crab maps are also seen, with regions between the

fainter filamentary structures having negative flux. The difference between the flux

in the Citlali iterative Jinc maps and the Minkasi maps is shown in Figure 4.17.

Overall, there is greater agreement compared to the Crab Nebula, though there re-

mains scatter. The Minkasi map recovers more flux from the brightest pixels in the

273 GHz map relative to Citlali which is in contrast to the case with the Crab

Nebula. The brightest regions are near the size of the beam in MonR2 as opposed

to being extended over several arcminutes as in the Crab Nebula and therefore likely

have a smaller impact on the nose estimate in the Minkasi mapmaker.
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Figure 4.16. Left column: Maps of MonR2 made with the Minkasi mapmaker for
the 3 TolTEC bands. Right column: Initial iteration Citlali Jinc maps of MonR2.
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Figure 4.17. Difference between the Citlali 100 iteration Jinc map fluxes and the
Minkasi fluxes for each pixel plotted against the Citlali fluxes. The color represents
the density of the points.
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CHAPTER 5

HIERARCHICAL BAYESIAN SED MODELING

In the analysis and modeling of dust SEDs, it is critical to consider the range

of factors that influence the estimation of key dust parameters before they can be

interpreted scientifically. The choice of the dust model for both the dust and other

SED components, the statistical framework employed for carrying out the fit, data

quality and wavelength coverage, and the inherent nature of the astrophysical source

all can contribute to systematic variations and stochastic noise introducing additional

uncertainties and biases into the derived dust parameters.

As described in Section 1.0.4, existing studies seeking to fit dust SEDs commonly

use either a single or multiple component modified blackbody or graybody models

between FIR and millimeter wavelengths and use the physically motivated dust mod-

els when NIR and MIR constraints are also available. The graybody models are

mathematically straightforward with few parameters and therefore require minimal

wavelength constraints for fitting but can produce parameter estimates that are less

representative of actual dust grain properties due to their inability to account for

the mixed physical conditions within galaxy ISMs. In contrast, the physical dust

models leverage the constraints from independent observations and dust grain labo-

ratory analogs to construct a detailed representation of the dust, factoring in grain

shapes, compositions, and size distributions, and heat it with a stellar radiation field

distribution to generate dust thermal and spectral emission features.

Both models are used in conjunction with the χ2 minimization, Maximum Likeli-

hood Estimator (MLE), or Bayesian fitting frameworks to estimate parameters from
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single sources like integrated galaxy flux measurements or pixels, as well as simultane-

ously across populations of independent observations, namely individual galaxies or

all the pixels in image data. With measurements of populations, information regard-

ing the distributions of parameters and the correlations among them can be gleaned.

The least-squares and MLE approaches are frequentist in nature and, while more

computationally efficient at deriving best-fit values, come with a number of limita-

tions including the inability to easily incorporate existing knowledge of the parameter

distributions, assumptions about the form of the likelihood, sample size biases, and

requirements that the noise be Gaussian and its variance constant. Comparison be-

tween models also presents some challenges. For Bayesian model inference, on the

other hand, the prior distributions are an integral component during fitting, and a

sampling from the full parameter probability distributions referred to as the posteri-

ors are the primary result. Sampling of the posteriors is performed using Monte Carlo

Markov Chain (MCMC) random walks which raise the computational requirements

for the Bayesian approach.

Regardless of the fitting method, interpreting the results from MBB and the phys-

ical dust models must be handled with care, as not only are there systematic biases

between the recovered dust masses and temperatures from fits to the same source

with each model, but also due to the fact that many of the dust parameters are cor-

related in a mathematical and, potentially, in a physical sense. These include the

anti-correlations between the dust temperature T and spectral emissivity index β for

the MBB model (Sajina et al. 2006) and an analogous anti-correlation between the

grain size distribution and mean starlight efficiency ⟨U⟩ in the physically motivated

dust models (Galliano 2022). The former arises because an increased dust tempera-

ture shifts the peak to shorter wavelengths and raises the flux into the Rayleigh-Jeans

limit, which can compensate for the shallower slope produced by a smaller β. The

grain size and ISRF distribution correlation occurs as a result of the SED at MIR
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wavelengths being the result of emission from stochastically heated small grains as

well as larger, hot grains in thermal equilibrium with the ISM. A larger shift in the

grain size distribution that favors small grains or a move towards more intense ISRF

values can result in a similar SED signature. Unlike the T-beta degeneracy, the

grain size distribution is usually constrained through independent means and is usu-

ally fixed while fitting. However, various correlations also exist between the physical

model dust parameters Mdust, α, U−, U∆, and qpah (Galliano 2022).

The consequences of these effects are most apparent when attempting to fit for

multiple independent observations and explore parameter scaling relationships. The

mathematically induced correlations act together with measurement uncertainties and

intrinsic source variations to bias parameter estimates and introduce further spurious,

unphysical correlations between them. Owing to the assumption of isothermal dust in

MBB models, multiple temperature components along the line of sight will produce

incorrect estimates of the dust temperature which will then bias β in the opposite

direction. Adding random noise onto each measurement scatters the estimated tem-

peratures further and results in a characteristic “banana” shape of the T -β parameter

space that does not represent the actual connection between the parameters. Uncer-

tainties at the 5% level have been shown to produce an anti-correlation (Shetty et al.

2009b). Galliano 2018 demonstrated that both random noise and calibration uncer-

tainties correlated across observation bands in simulated SEDs perturb the shapes

of parameter covariance distributions for MBBs, BEMBBs, and physical dust models

and investigated the extent of the effect with S/N and wavelength coverage variations.

A strong negative correlation was observed between the mean ISRF value ⟨U⟩ and

Mdust when fitting with least-squares and single-level Bayesian methods.

The existence of the T -β anti-correlation has long been known in observational

data (Keene et al. 1980; Blain et al. 2003; Sajina et al. 2006; Kelly et al. 2012). It has

been observed in MBB fits to starless cores (Schnee et al. 2010), the Central Molecular
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Zone of the Milky Way (Tang et al. 2021), and cold dense clouds (Paradis et al. 2014;

Juvela et al. 2015). The nature of the actual underlying physical relationship remains

unclear. Under a simple scenario of enhanced dust grain growth within dense ISM

environments due to the increased frequency of dust-dust interactions and collisions,

a decrement in the emissivity index would be expected with increasing dust and gas

column density. With the dust temperature decreasing in dense environments as a

result of dust shielding by the outermost layers, a positive correlation in the T -β space

would be favored. Lower β values relative that of the diffuse ISM have been observed

in some proto-planetary disks and dense molecular clouds which support this idea.

However, other observations, simulations, and laboratory analogs demonstrate that

an anti-correlation may have a physical basis. Some amorphous carbon laboratory

analogs do indeed exhibit intrinsic anti-correlations (Agladze et al. 1996; Boudet et al.

2005). Ysard et al. 2015 employed the dust models of Jones et al. 2013 in fits of the

Planck High Frequency Instrument (HFI) survey and found that the inclusion of dust

mantles onto grains can produce an anti-correlation whose scatter is completely in

agreement with observations. Galliano et al. 2021 reproduced the T -β anti-correlation

in MBB fits (Figure 5.1 to the combined DustPedia and Herschel Dwarf Galaxy

surveys.

These spurious and unphysical parameter correlations can be minimized through

the application of a hierarchical or multilevel Bayesian model, which naturally incor-

porates and accounts for measurement and calibration uncertainties and their intro-

duced correlations in the fitting through Bayesian priors. In hierarchical Bayesian

fitting, the prior distributions which usually are used to encode external knowledge

about the parameters are constructed from the fitted parameter distributions and

described with a new set or level of parameters and priors known as the hyperparam-

eters and hyperpriors. Kelly et al. 2012 developed an approach using a hierarchical

Bayesian model to add random and correlated noise components as hyperparameters
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Figure 5.1. Figure reproduced from Galliano et al. 2021 showing the T -β anti-
correlation recovered from a hierarchical Bayesian STMBB fit to galaxies of the Dust-
Pedia and DGS samples. Colors represent the morphological type. The ellipses are
the 1σ Skewed Uncertainty Ellipses derived from the posterior distribution.

to MBB model fits of simulated dust SEDs that correctly recovered the true correla-

tions between T and β. This approach has since been utilized to develop a suite of

MCMC fitting codes for MBB and TTMBB models (Veneziani et al. 2013; Lamperti

et al. 2019; Tang et al. 2021), as well as physical dust models (Galliano 2018; Galliano

et al. 2021).

This chapter details the C++ hierarchical Bayesian MCMC SED fitting software

tool that I have developed primarily for the purpose of fitting the dust SEDs within

each pixel of TolTEC observations of nearby massive and dwarf galaxies, though its
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modular nature allows for the incorporation of a range of SED models. The approach

implemented here closely follows the work described in Tang et al. 2021 who wrote

a hierarchical Bayesian fitting software package also in C++ to perform MBB fits

to each pixel in observations of the Central Molecular Zone (CMZ) carried out with

Herschel, AzTEC, Bolocam, and Planck. A forward-fitting strategy where the model

in each wavelength band is effectively convolved with the corresponding instrumental

PSF for every step in the MCMC chains was utilized to ensure that the results could

fully leverage the higher resolution bands without needing to degrade all observations

to the lowest resolution of the incorporated data. In Tang et al. 2021, for the single

temperature MBB model, only the hyperparameters related to T and β were used in

the hierarchical model. A multi-temperature MBB model that assumes a polytropic

equation of state was also implemented, which included hyperparameters for T and

the polytropic index. The code described here implements the hyperparameters and

hyperpriors in a model-independent framework allowing for all parameters of any

included model and parameters from linear combinations of separate models to be

folded into the hierarchical model.

5.1 Bayesian Formalism

Following both the notation and formalism outlined in Kelly et al. 2012 and Gal-

liano 2018, the observed flux density Fobs for source i and band j can be written

as

Fobsj = δj · Fmodelj(xi) + ϵij, (5.1)

with Fmodelj(xi) being the modeled flux for the same source and band given the fitted

parameter vector xi, δj a calibration uncertainty for band j, and ϵij the measurement

noise for each pixel. At the core of any Bayesian inference is the Bayes theorem which

is given by
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p(xi|Fobsj , Fmodelj) =
p(Fobsj |xi, Fmodelj) · p(xi|Fmodelj)

p(Fobsj |Fmodelj)
. (5.2)

The Bayes theorem relates the posterior distribution p(xi|Fobsj , Fmodelj) which is the

probability of acquiring the parameter vector of the particular model given the data,

to the product of the prior and the likelihood probability. The prior, p(xi|Fmodelj),

is a probability distribution that describes what is known about the parameters be-

fore the inference and represents the initial belief or knowledge about the parameters

of the model. The choice of prior can range from very informative, specifying ex-

pected values and variances based on prior knowledge, to non-informative or weakly

informative, which have minimal impact on the posterior distribution. The likelihood,

p(Fobsj |xi, Fmodelj), encodes the probability of obtaining the data given the model, the

current choice of parameters, and the measurement uncertainty. It is often assumed

to be a normal distribution and can be written in the form

L(Fobsj |xi, Fmodelj) = exp

(
−0.5

(
Fobsj − Fmodelj(xi) · δj

σij

)2
)
. (5.3)

The normalization constant p(Fobsj |Fmodelj) is the marginal likelihood which is the

evidence or probability of obtaining the data given the model after integrating or

marginalizing the likelihood function and prior over all the parameters in the model.

When model fitting under the Bayesian framework, the normalization of the poste-

rior is usually irrelevant unless comparisons between two models are required. We

can therefore ignore the marginal likelihood and write the Bayes theorem as a pro-

portionality or

p(xi|Fobsj , Fmodelj) ∝ p(Fobsj |xi, Fmodelj) · p(xi|Fmodelj). (5.4)

The idea of Bayesian MCMC fitting is to sample from p(xi|Fobsj , Fmodelj) by randomly

sampling the parameters and evaluating Equation 5.4 for the corresponding parameter

vector xi.
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5.2 Hierarchical Bayesian Formalism

In the hierarchical Bayesian extension to the single-level Bayesian modeling frame-

work, we introduce a new set of variables, known as the hyperparameters, that de-

scribe the distribution of the parameters xi across all sources. The priors for the

parameters are then inferred based on the choice of probability distribution for the

hyperparameters and the values of the parameters themselves. If xh represents the

vector of hyperparameters, Equation 5.4 can then be rewritten as

p(xi|Fobsj , Fmodelj , xh) ∝ p(Fobsj |xi, Fmodelj) · p(xi|xh) · p(xh). (5.5)

Here, p(xh) is the prior on the hyperparameters or their hyperpriors. The parameter

probability distribution p(xi|xh) describes the probability of the model parameters

given the values of the hyperparameters. It is often assumed to follow a multivariate

Student’s t-distribution to ensure a robust estimate in the case of outliers:

p(xi|xh) =
1√
|Σ|

(
1 +

1

(xi − µ)TΣ−1(xi − µ)

)−(d+q)/2

. (5.6)

In this case, the hyperparameters are the vector of parameter means, µ, and the

parameter covariance matrix, Σ which incorporates the variances and correlation

coefficients that describe the model parameter distribution. The degrees of freedom,

d, controls the shape of the Student-t distribution and the extent of outlier tails. I

adopt d = 8, as used in Kelly et al. 2012 and Galliano 2018. The value q is the number

of parameters in the model which may include all of the parameters that make up

the model or only a subset of the most correlated ones to reduce dimensionality.

5.2.1 Hyperpriors

With the hierarchical model parameter distribution and hyperparameters chosen,

we can now define additional priors, p(µ) and p(Σ), for the hyperparameters them-

selves, such that Equation 5.4 becomes
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p(xi|Fobsj , Fmodelj , µ,Σ) ∝ p(Fobsj |xi, Fmodelj) · p(xi|µ,Σ) · p(µ) · p(Σ). (5.7)

There are few requirements for the hyperprior on µ, so a uniform distribution is

commonly assumed. The hyperprior on Σ is more involved owing to the fact that the

parameter covariance matrix must be both symmetric and positive definite such that

|Σ| > 0. It is therefore convenient to sample each of the distribution variances and

correlation coefficients that make up Σ sequentially and place independent priors on

them. Barnard et al. 2000 devised a separation strategy for Σ where the matrix can

be decomposed as

Σ = SRS. (5.8)

The matrix S is a diagonal matrix consisting of the distribution variances and R is

the correlation matrix. The hyperparameter priors can then be re-expressed as

p(µ) · p(Σ) ∼ p(µ) · p(S) · p(R). (5.9)

For p(S), previous studies have used a normal distribution on the logarithm of each

variance (Kelly et al. 2012; Galliano 2018) or a half-Cauchy distribution (Lamperti

et al. 2019). I employ the former which was found to be slightly more robust for

simulated distributions with low S/N fluxes. As given in Galliano 2018, it takes the

form

p(S) =
n∏

k=1

1√
2πσχ2

exp

(
−(ln(Skk)− ln(S

χ2
k

kk ))2

2σ2
χ2
k

)
, (5.10)

where Skk is the natural log of the variance for parameter k, Sχ2

kk is the variance

determined from a χ2 fit, and σχ2
i

is the variance of the natural log of Sχ2

kk . A value

of 10 is used for σχ2
i

for all k resulting in p(S) being a relatively weakly informative
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prior. For sampling the correlation coefficients, an inverse Wishart distribution is

used, where p(R) becomes

p(R) = |R|
q(q−1)

2
−1 ×

(
n∏

k=1

|Rkk|

)− q+1
2

, (5.11)

with q being the number of model parameters included in Σ, and Rkk is the princi-

pal submatrix made by removing row and column k from R. The inverse Wishart

distribution produces a jointly uniform prior on the interval [-1,1] for all correlation

matrices and can be used to acquire a probability and interval such that a randomly

sampled correlation coefficient will result in a positive definite matrix given that all

other coefficients are held constant. Each marginal probability, however, will not be

uniform as the values of other correlation coefficients restrict the value for what the

value of a newly sampled coefficient can be. This effect is illustrated in Figure 5.2.

The interval for sampling each new correlation coefficient from to ensure |R| > 0 can

be determined from the roots of |R| after recognizing that it is a quadratic equation

in R.

5.3 Calibration Uncertainties

The probability distribution for the calibration uncertainties can be assumed to

take the form of a multivariate normal or multivariate Student t-distribution with a

covariance matrix describing the relationships between each correlation coefficient δj

for band j. It has been shown that incorporating calibration uncertainties as addi-

tional parameters can result in significantly longer MCMC convergence times since

they can be highly correlated between bands (Lamperti et al. 2019). More involved

sampling techniques like the ancillarity–sufficiency interweaving strategy (ASIS; Yu

and Meng 2011) are required for convergence (Kelly et al. 2012; Galliano 2018). I do

not account for the correlation uncertainties in the hierarchical model in the current

implementation of the code described here owing to the additional computational
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Figure 5.2. Example distributions of the MBB hyperprior p(R) for the ln(T ) −
β correlation coefficient, ρln(T ),β given different values of ρlog(Σdust),ln(T ) and with
ρlog(Σdust),β = 0. The allowed probabilities for ρln(T ),β will be restricted to ensure
the correlation matrix R is positive definite.
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requirements of the PSF convolutions performed each MCMC step carried out and

the preliminary nature of the results being presented. I do, however, plan to fully

integrate calibration uncertainties in conjunction with additional samplers, namely

the ASIS and the No-U-Turn Sampler (NUTS; Hoffman and Gelman 2011) in a future

version.

5.4 Slice-within-Gibbs Sampling

I use the slice-within-Gibbs (Neal 2000) sampling strategy as implemented in Tang

et al. 2021. Gibbs sampling is an MCMC algorithm often used for obtaining param-

eters from a multivariate probability distribution when direct sampling is difficult.

The essence of Gibbs sampling lies in its iterative approach, where each parameter

is updated sequentially, sampling from the conditional distribution of that parameter

given the value of all the other parameters from the previous MCMC step. This

process exploits the fact that sampling from the conditional distribution of a subset

of variables is often simpler than sampling from the joint distribution of all variables.

Over many iterations, the sequence of samples thus generated converges to the tar-

get distribution. The sampling of each parameter in turn is critical for updating

the hyperparameters where each new correlation coefficient must be tested against

the current correlation coefficients to ensure that the covariance matrix Σ is positive

definite.

The slice-within-Gibbs algorithm is outlined in Figure 5.3. Slice sampling operates

by defining a ”slice” or a region under the probability density function at a certain

level and then uniformly samples from this slice. It starts by using the current pa-

rameter guess and a corresponding slice by evaluating the probability density at that

point. A new sample is then drawn from within this slice, ensuring it adheres to the

target distribution. The key advantage of slice sampling over other MCMC methods

is its self-tuning property; it automatically adjusts the size of the slice according to

175



Input:
ln(p) = natural logarithm of the posterior distribution
x0 = current parameter vector
y = the slice height, defined as ln(p(x0))− e, where e ∼ Exponential(1)
(L,R) = the interval to sample from
ϵ = the minimum tolerance for the separation between L̂ and R̂

Output:
x1 = new parameter vector

L̄← L, R̄← R
repeat

U ∼ Uniform(0, 1)
x1 ← L̄ + U · (R̄− L̄)
if y < ln(p(x1)) then

Accept(x1) and exit loop
end if
if x1 < x0 then

L̄← x1

else
R̄← x1

end if
until L̄− R̄ < ϵ

Figure 5.3. Figure adapted from Neal 2000 and Tang 2019. The Gibbs slice shrink-
age algorithm used to sample new parameter and hyperparameter values.
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the shape of the distribution, which helps in efficiently exploring the sample space

without the need for manual tuning of parameters. This attribute makes slice sam-

pling particularly useful in situations where the probability distribution has complex

characteristics. Furthermore, unlike Metropolis-Hastings and other similar MCMC

sampling strategies, there is no acceptance or rejection fraction of proposed parame-

ters for each step of the MCMC chain in slice sampling with every step accepting a

new parameter. One disadvantage of Gibbs sampling is that it can be inefficient if

the variables are highly correlated.

5.5 SED Models

A core design choice of our code is the separation between the model definitions

and both the parameter sampling and hierarchical model. This allows a range of

models to be added and used in conjunction with one another to model different

astrophysical emission mechanisms while employing the same hierarchical Bayesian

formalism. The code incorporates models to describe dust, stellar, and nonthermal

emission in order to fit galaxy SEDs across NIR and millimeter wavelengths, as well

as a model for the thermal Sunyaev-Zeldovich effect to support future TolTEC ob-

servations of galaxy clusters.

For most models, the code explicitly calculates the models for each step of the

MCMC within every pixel and does not use a precomputed model grid. The sole

exception is the physically motivated dust model, as directly computing the dust

emissivities from their dielectric functions is complex and computationally intensive.

5.5.1 Single Temperature Modified Blackbody

I implement the single temperature MBB (STMBB) model for fitting the dust

emission between FIR and millimeter wavelengths. An in-depth discussion of the
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STMBB model and its variants is given in Section 1.0.4.1. I adopt the most general

form for the model without assuming that the dust is optically thin (i.e. τν << 1) as

Iν =

(
1− e

−κ0

(
ν
ν0

)β
Σdust

)
×Bν(T ). (5.12)

I use a value of κ0 = 9.93 cm2/g at ν0 = 160 µm following the recommendation of

Galliano 2022 to not use submillimeter wavelengths owing to the higher amount of

scatter in laboratory dust analogs (Coupeaud et al. 2011). The value is taken from

the reported opacity of the Astrodust model from Chastenet et al. 2021. Furthermore,

as shown in Figure 1.4, the total extinction from the Astrodust model (Hensley and

Draine 2023), which I use for the physically motivated dust model fitting in this work,

and the THEMIS model are in good agreement at FIR wavelengths. Following Kelly

et al. 2012, the dust temperature is sampled as ln(T ) to normalize its range relative

to the other parameters.

5.5.2 Physically Motivated Dust Model

The code implements the Astrodust + PAH dust model from Hensley and Draine

2023 for fitting dust emission with NIR and MIR constraints. It differs from con-

temporaneous dust models in that it approximates larger dust grains (a ≥ 0.02 µm)

as a single amalgamation of different materials as opposed to two separate popula-

tions of silicate and carbonaceous grains. This choice is motivated by measurements

of the dust polarization fraction with Planck and BLASTPol between 250 µm and

3 millimeters which have variations of less than 10% as a function of wavelength.

The polarized emission properties of individual silicate and carbonaceous grains are

expected to be different such that different mixtures of grain types in the ISM will

exhibit varying polarization fractions. If the dust grains are indeed divided into two

categories, the emission from larger silicate grains would become increasingly impor-
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tant to the dust SEDs at longer wavelengths, which would lead to an evolution in the

polarization fraction.

Figure 5.4. Size distributions for the Astrodust (blue) grains and PAH (orange)
grains.

The Astrodust model assumes a spheroidal shape for the larger grains as asym-

metry is a requirement for dust grains to emit and absorb polarized light (Draine and

Hensley 2021). The grains are comprised primarily of silicates bound to Mg, Fe, and

Ni with about 50% of the mass of the grains being accounted for by silicates. Iron

and additional ferrous compounds such as Fe3O4 and FeS are added to match the

measured iron depletions of the ISM and make up 30% of the grain mass. The re-

maining 20% of the mass is incorporated as carbon compounds like hydrocarbons and

CaCO3, as well as Al2O3 and SiO2. The grain size distribution is estimated assuming

a parametric form using MIR extinction and FIR to millimeter emission constraints

from observations of the diffuse Milky Way ISM. The size distribution of Astrodust
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is shown in Figure 5.4 and is distinctly bimodal. Similar multi-modal distributions

have been derived before when using polarization constraints (Kim and Martin 1995;

Draine and Fraisse 2009) and are also a consequence of grain growth and evolution

models (Li et al. 2021; Hirashita and Il’in 2022; Hensley and Draine 2023).

The model also includes PAH grains (a < 0.01 µm) that account for the remaining

carbon mass of the ISM in order to explain MIR emission and extinction spectra. The

derived PAH mass fraction for the Milky Way, qPAH , is 5.8%. The PAH grains are

modeled as being non-aligned such that they do not contribute to the observed dust

polarization features. The derived PAH size distribution is similarly bimodal to that

of the Astrodust grains and are also illustrated in Figure 5.4.

I use the publicly available model emissivities1 for both the Astrodust and PAH

grains to fit the dust SEDs. The model corresponds to the Milky Way extinction

value of RV = 3.1. I only include thermal emission from non-aligned grains and do

not consider the total or polarized emission from aligned or spinning grains in this

work. The emission quantities are tabulated for values of the ISRF field strength of

−3 < log(U) < 6 and for wavelengths of between 0.1 < λ < 3 × 104 µm in steps

of 1.3 × 10−3 µm. I use the dust-to-gas ratios of Mastrodust/MH = 0.0064ΣH and

MPAH/MH = 0.0007ΣH to convert the tabulated emissivities from νIν/NH to νIν/g

to derive dust masses as given in Hensley and Draine 2023. The Astrodust and PAH

emissivities are available either individually to allow them to be fit independently or

as a total. I use the former to enable the fitting of qPAH and thus model the dust

emissivities as

jν(U) = (1− qPAH)× jν,astrodust(U) + qPAH × jν,PAH(U), (5.13)

1https://dataverse.harvard.edu/dataverse/astrodust
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where jν,astrodust(U) and jν,PAH(U) are the Astrodust and PAH emissivities at fre-

quency ν and ISRF value U . A two-dimensional bicubic interpolation across log(U)

and wavelength is used to derive jν for any arbitrary value of each parameter. For the

starlight distribution, we use the Dale et al. 2001 parametrization of dMdust/dU ∼

U−α (see Section 1.0.4.2 for a more in-depth description) and numerically integrate

jν × U−α over 1000 points between U− and U∆ which are sampled in the MCMC

fitting algorithm.

5.5.3 Stellar Emission

Starlight emission from old stellar populations of cool, low mass stars contributes

to SEDs at NIR wavelengths and can affect estimates of the contribution to the dust

mass from small grains. I include a stellar emission component which is modeled as

a Rayleigh-Jeans law in the form of

Fν =
2ν2kBFscale

c2
, (5.14)

where kb is the Boltzmann constant and Fscale is a scaling factor accounting for the

temperature and bolometric flux value and is the single fitted parameter. The effects

of dust extinction and reddening aren’t taken into account in the stellar SED, so the

applicability of this simple approximation below NIR wavelengths is limited. The fit

is therefore restricted to λ < 4.0 µm.

5.5.4 Nonthermal Emission

Nonthermal contributions to the SED arising from free-free and synchrotron emis-

sion can represent a significant fraction of the total flux for millimeter observations.

I adopt the prescription outlined in Galliano 2018 to fit nonthermal emission, which

takes the form of
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Fν =
f1
ν1

(
fff

(
ν

ν1

)−0.1

+ (1− fff)

(
ν

ν1

)α
)
. (5.15)

Here, F1 is flux at 1 cm with ν1 = c/1cm = 2930 GHz, fff is the fraction of free-free

flux, and α is the synchrotron index.

5.5.5 Thermal Sunyaev-Zeldovich Effect

TolTEC will carry out observations of the thermal SZ effect (Sunyaev and Zel-

dovich 1970; Sunyaev and Zeldovich 1972) in galaxy clusters which will take advantage

of the camera’s simultaneous measurement of the flux increment, the null, and decre-

ment of CMB photons within its 273, 214, and 150 GHz bands. Following Carlstrom

et al. 2002, the spectral distortion to the CMB spectrum from the thermal SZE can

be expressed as

∆ISZE = g(x)I0y, (5.16)

with x = hν
kBTCMB

, I0 = 2(kBTCMB)
3

(hc)2
, and

G(x) =
x4ex

(ex − 1)2

(
ex + 1

ex − 1
− 4

)
(1− δSZE(x, TCMB)). (5.17)

The term δSZE(x, TCMB) is a relativistic correction, which is ignored in the current

implementation. The Compton-y parameter is the single model parameter and is

defined as the integral of the electron pressure, nekBTe where ne is the electron number

density, and Te is the electron temperature along the line of sight through the cluster:

y =

∫
kBTe

mec2
neσT dl. (5.18)

Here, me is the electron mass, σT is the Thomson scattering cross-section. An impor-

tant consideration that can bias estimates of the Compton-y parameter when fitting

the SZ effect in galaxy clusters is the presence of foreground dusty star-forming galax-

ies (DSFGs) which will take the form of point sources in the observed field. DSFGs
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can be simultaneously fit using MBB models and incorporated with the SZ model in

the hyperparameters to mitigate their influence.

5.6 Forward Fitting Strategy

The code uses the forward-fitting strategy outlined in Tang 2019 and Tang et al.

2021, with the entire fitting process being illustrated in Figure 5.5. The input data

consists of a set of images at different wavelengths that are aligned onto the same

pixel grid, in addition to images of the PSFs for each band that are assumed to have

the same pixel scale as the data. The images are sampled at the native resolution

of the instrument and need not be convolved to the same resolution, as the PSF

information is used to generate the model images. A mask image is an optional input

that restricts which pixels are used in the calculation of the hyperpriors to limit

the potential biasing due to the inclusion of pixels that do not measure source flux.

The mask does not exclude pixels from the fit itself to maintain the same number of

measurements across all pixels. The outputs of the code are (1) the MCMC chains for

every pixel, parameter, and hyperparameter, (2) median and maximum a posteriori

maps for every model parameter, and (3) model flux maps derived from the output

model parameter images.

For each step in the MCMC routine, the parameters are sampled for each pixel

within the common pixel grid, and model flux images are generated for each band

given the current choice of SED models. The model images can be generated for

a single representative wavelength or can be generated from an integral over the

instrument bandpasses, where the pixel flux is then given by

Fν,0 =

∫
Fν · gν dν∫
ν0
ν
· gν dν

. (5.19)

where gν is the normalized bandpass transmission at frequency ν. After model gener-

ation, the model fluxes are convolved with the corresponding PSF to dilute it to the
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Figure 5.5. The fitting strategy used in the hierarchical Bayesian routine presented
here. Red blocks represent functions, tan blocks are values calculated over the com-
mon pixel grid, and green are raw data inputs.

resolution of the observation. Our approach differs from Tang et al. 2021 in that the

entire convolution is carried out over the full pixel grid at once for every proposed

MCMC step as opposed to dividing the input grid into smaller blocks and only con-

volving within a radius of 8× σpsf , where σpsf is the standard deviation of the PSF.

The posterior is then evaluated for each pixel taking into account the proposed pa-

rameters and current hyperparameters according to Equation 5.7, and the parameters

are accepted or re-sampled according to the slice within Gibbs acceptance criteria.

The hyperparameters are then sampled and updated after the model parameters for

each pixel has been updated.

In addition to its use in Tang et al. 2021 to study the CMZ, similar approaches that

incorporate the PSF information into Bayesian inference fits have been employed pre-

viously to fit the dust continuum emission from the Herschel infrared Galactic Plane

(Hi-GAL) survey (Marsh et al. 2015; Marsh et al. 2017). These studies demonstrated

an improvement in the accuracy of the recovered dust column density partly as a

result of the improved resolution of the incorporated data.
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A quantitative determination of the resolution of each parameter map is challeng-

ing as different model parameters are more strongly constrained by observations at

different wavelengths which can have PSF FWMHs that differ by an order of mag-

nitude. For example, in MBB model fitting, the spectral index β will not depend

as strongly on observations with λ < 100 µm as it would for observations at sub-

millimeter and millimeter wavelengths. If fitting with only Herschel observations,

the lower resolution SPIRE bands will likely have a greater effect on the recovered

resolution for the β image compared to the higher resolution PACS bands. When

fitting with physical dust models, the PAH component will be better constrained by

higher resolution MIR observations and depend much less on FIR bands.

5.7 Bayesian Regularization

One complication that is introduced by the forward-fitting method is a tendency to

overfit each pixel which arises due to intrinsic and noise variations within the higher-

resolution data. The effect can be illustrated by considering the fit to a compact

source with an angular extent smaller than that of the lowest resolution band. Such

a source would appear as a PSF-like object in the lower-resolution bands but may

be resolved in the higher-resolution data. The best-fit parameter maps would be a

delta function for the observations with coarser resolutions but extended for more

finely-grained bands. The extent of overfitting depends on the pixel scale, with larger

pixel sizes minimizing variations in the higher-resolution data because of the pixel

binning.

Overfitting in Bayesian inference is a well-studied phenomenon, particularly in the

context of machine learning where the number of parameters is significantly higher

than the number of observations. It can be mitigated by Bayesian likelihood regular-

ization, which adds a penalty term to the likelihood in the form of
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ln
(
p(Fobsj |xi, Fmodelj)

)
= ln

(
p(Fobsj |xi, Fmodelj)

)
+ λG, (5.20)

where G is a function that depends on the model parameters and lambda is a scaling

factor. The form of G can be chosen to reduce the probability of certain parameter

values. Existing forms include L1 norm and L2 norm regularization, which suppress

parameters with large magnitudes, as well as gradient and curvature regularization

that minimize variations between adjacent pixels and generally assume a flat and a

planar distribution for the image pixels respectively. Tang et al. 2021 adapted the

gradient regularization technique of Warren and Dye 2003, with G being expressed

as

G =
1

2

∑
p

(
λp (pi,j − pi+1,j)

2 + (pi,j − pi,j+1)
2 + (pi,j − pi−1,j)

2 + (pi,j − pi,j−1)
2) .
(5.21)

Here, pi,j is the model parameter at pixel (i,j) and λp is a scaling parameter that

controls the level of regularization or smoothing. It can be expressed in terms of a

parameter standard deviation in the form of λp = 1/2σ2
p. The likelihood is therefore

modified depending on the magnitude of the difference between the parameter values

at (i,j) and those of nearby pixels. The optimal value of λp varies with the pixel

scale, image resolutions, and model parameters. Values in the results presented here

were determined empirically based on a visual inspection of the best-fit model images

and parameter distributions. I also explored the curvature regularization function

described in Warren and Dye 2003, but found it produced similar results to the

gradient regularization for the values of λ used here.

5.8 Code Overview

The codebase incorporates many of the software lessons related to optimization

and parallelization learned during the development of the TolTEC data reduction

pipeline, which is described in more detail in Section 3.2. Carrying out the model

186



evaluation and PSF convolution for every step of the MCMC chain is computation-

ally expensive. The images considered in this study typically have > 103 pixels and

may require > 104 samples to converge. To accommodate the computational require-

ments, I have written the code in C++, using Eigen, FFTW, and GrPPI to improve

efficiency. The GNU Scientific Library2 (GSL) is used for generating random deviates

and for the interpolation of the physical dust model emissivity grids. The decision

to carry out the PSF convolutions on the entire images was motivated by the use of

FFT-based convolutions which are more efficient for large image sizes and to enable

vectorization of the model generation across all pixels. Typical runtimes required to

reach convergence on a single chain vary between ∼30 minutes for MBB fits with

Herschel data only to approximately ∼10 hours for physical dust models using both

Spitzer and Herschel constraints.

Parallelization is handled on a per-chain basis, where multiple independent MCMC

chains can be used to sample the parameter space simultaneously. This helps mitigate

MCMC chains from becoming stuck due to poor mixing or multi-modal posterior

distributions.

5.9 Results

In this section, I present the results of the application of the hierarchical Bayesian

fitting package outlined above to simulated SEDs as well as observations of the nearby

galaxy NGC 3938. The parameter space to explore is large, consisting of all the pa-

rameters and hyperparameters from the various implemented models, their correla-

tions, and the ranges of possible S/N and resolutions of the data. For this reason, I

focus primarily on demonstrating the correctness of results and restrict the analysis

to the dust and stellar models as these directly relate to the primary intended pur-

2http://www.gnu.org/software/gsl/
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pose of the fitting code, which is to fit dust SEDs in nearby star-forming and dwarf

galaxies with TolTEC constraints.

5.9.1 Simulations

I first test the fitting algorithm and model implementations by applying them to

a population of synthetic SEDs generated from the MBB and physical dust model

prescriptions. I begin by exploring the fitting without considering the instrumen-

tal resolutions or likelihood regularization, which is equivalent to assuming that all

bands are at the same resolution and each measurement is independent outside of

its distribution as sampled by the hyperparameters. This would be representative of

the case where each source is the integrated flux from a galaxy as opposed to pixels

in an image of a single source and is useful for characterizing the MCMC sampler

and dust models. A total of 625 synthetic SEDs on 25×25 grids were generated by

randomly drawing model parameters from a multivariate normal distribution. This

allows for explicit control of the intrinsic correlations among the input parameters. I

add Gaussian distributed noise to the flux estimates of each source that corresponds

to the average S/N across all the sources. The MCMC is run for at least 20000 sam-

ples for all cases and tested for convergence, with the median value of the final 5000

samples used as the parameter value.

5.9.1.1 Simulated Single Temperature MBBs

Figures 5.6, 5.7, and 5.8 show the T -β distributions for hierarchical and non-

hierarchical fits to simulated single temperature MBB models sampled at the Her-

schel/PACS, Herschel/SPIRE, and TolTEC bands for varying noise. The input mul-

tivariate normal distribution is given in Figure 5.1. All correlation coefficients in-

cluding ρT,β, are set to zero for the input data. For all S/N values considered, the

fitting results using the hierarchical model outperform the non-hierarchical fit, with

the former being characterized by less scatter and little to no introduction of a corre-
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lation between the parameters. Above S/N ≥ 50, the distributions and uncertainties

are nearly identical. The noise-induced anti-correlation is clearly visible in the non-

hierarchical fit for S/N ≤ 5. The scatter in the hierarchical fits tends to underpredict

the intrinsic scatter of the parameters, particularly for the low S/N cases. This effect

was previously observed in Galliano 2018 who found it to be the result of the chang-

ing shape of the likelihood relative to the prior distribution as the noise increases.

The likelihood function broadens as the noise increases thereby amplifying the con-

tribution from the nearly flat priors. This has the effect of flattening the posterior

distribution. Both fits in the lowest S/N bin are biased, though the hierarchical fit

remains much closer to the true values, and the individual source uncertainties are

markedly larger.

Table 5.1. MBB Input Distribution Parameters

Parameter Value
µlog σdust

, µT , µβ −7, 20, 2
σlog σdust

, σT , σβ 2, 5, 0.1

Of particular interest for the study of nearby galaxies with TolTEC is the extent

of the improvement that millimeter wavelength constraints can add to the recovery

of MBB dust parameters and to the reduction of uncertainties and biases. Fits with

and without TolTEC constraints are shown in Figure 5.9 for simulated dust SEDs

with an average S/N value of 10. There is a reduction in the scatter and uncertainties

across the sources relative to the Herschel only case, especially in β. A slight residual

anti-correlation remains in the T -β distribution derived from the Herschel only re-

sult. Figure 5.10 shows the posteriors and parameter covariance distributions for all

MBB dust parameters in both cases. While log(Σdust) and T are similar, β is better

constrained. The estimate of T depends more heavily on measurements near the peak

of the dust SED and will be less affected by the inclusion of millimeter observations.

While log(Σdust) does depend on longer wavelength data to constrain the cold dust,
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Figure 5.6. T -β distributions from fits to simulated MBB SEDs (orange points)
with an average S/N=50. The left panel shows the fitted values using the hierarchical
model (blue points) and the right panel is from a non-hierarchical Bayesian MCMC
fit. The ellipses around each point are the 1-σ parameter uncertainties derived from
the MCMC samples of that source.

Figure 5.7. Same as Figure 5.6 but for an average S/N=10.
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Figure 5.8. Same as Figure 5.6 but for an average S/N=5.

it is not subject to the same noise degeneracies as T and β and therefore doesn’t vary

significantly with additional millimeter observations.

5.9.1.2 Simulated Physical Dust Models

The previous analysis was repeated with the Astrodust + PAH physical dust model

instead of the single temperature MBB. The parameters of the multivariate normal

distribution from which the model parameters are drawn are given in Table 5.2. The

flux values are sampled at the Spitzer/IRAC, Spitzer/MIPS 24 µm, Herschel/PACS,

and Herschel/SPIRE, and TolTEC bands with varying levels of noise added to them.

The correlations among parameters, particularly U−, U∆, and α, can be complex so I

combine their effects into the mean value of the radiation field ⟨U⟩ as given in Equation

1.9. The distribution of ⟨U⟩ and log(Σdust) for different S/N values are illustrated

in Figures 5.11, 5.12, and 5.13. Compared to the MBB case, the hierarchical fit of

the physical dust model performs better even for high noise cases. Parameter chain

histograms and joint posterior scatter plots for all model parameters are provided
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Figure 5.9. T -β distributions derived from hierarchical Bayesian MCMC fits to
simulated SEDs with an average S/N=10. The left panel includes only fluxes within
the Herschel PACS and SPIRE bands, whereas the right panel also adds fluxes at
the 3 TolTEC bands.

for the S/N=5 simulation in Figure 5.14. The hierarchical fit results in much better

constraints and reduces the strong correlations between in U−, U∆, α, and log(Σdust)

seen in the non-hierarchical fit.

Table 5.2. Physically Motivated Model Input Distribution Parameters

Parameter Value
µlogΣdust

, µα, µU− , µU∆
, µqpah 7, 2, 0, 3, 0.048

σlogΣdust
, σα, σU− , σU∆

, σqpah 0.1, 0.1, 0.1, 0.1, 0.01
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Figure 5.10. Posterior histograms and parameter-parameter distributions for hier-
archical fits to the S/N=10 Herschel only (blue) and Herschel + TolTEC (orange)
cases.
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Figure 5.11. log(Σdust)-⟨U⟩ distributions from fits to simulated physical dust model
SEDs (orange points) with an average S/N=50. The left panel shows the fitted
values using the hierarchical model (blue points) and the right panel is from a non-
hierarchical Bayesian MCMC fit. The ellipses around each point are the 1-σ parameter
uncertainties derived from the MCMC samples of that source.

Figure 5.12. Same as Figure 5.11 but for an average S/N=10.
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Figure 5.13. Same as Figure 5.11 but for an average S/N=5.
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Figure 5.14. Posteriors and parameter-parameter scatter plots for the hierarchical
(blue) and non-hierarchical (orange) fits to the simulated S/N=10 physical dust SEDs.

A comparison of the fits with and without TolTEC constraints is shown in Figure

5.15 for the ⟨U⟩ and Σdust relationship for the S/N=5 case. Unlike the MBB model,

there is little improvement in the parameter estimations, which is likely due to the

inclusion of MIR constraints.

196



Figure 5.15. log(Σdust)-⟨U⟩ distributions derived from hierarchical Bayesian MCMC
fits to simulated physical dust model SEDs with an average S/N=5. The left panel
includes only fluxes from all Spitzer and Herschel bands, whereas the right panel also
adds fluxes at the 3 TolTEC bands.

5.9.2 NGC 3938 Analysis

I apply the fitting code on real data of the face-on nearby spiral galaxy NGC

3938 using archival WISE, Spitzer, and Herschel observations. NGC 3938 was se-

lected for analysis primarily due to its inclusion in the list of TolTEC commissioning

targets, its relatively small angular size, and its well-defined spiral structure which

may show variations in dust properties. Image data of NGC 3938 was acquired from

the DustPedia database which has collected multi-wavelength photometric data from

875 local galaxies and processed them to build a large homogeneous data set (Davies

et al. 2017; Clark et al. 2018). Aperture-matched photometric fits to an MBB model

as well as from panchromatic models with CIGALE using the THEMIS and Draine

et al. 2014 dust models are also tabulated for most galaxies.

The data reduction for each band by the DustPedia team is detailed in Clark et al.

2018. Briefly, the Herschel SPIRE and PACS maps were processed with the Herschel
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Interactive Processing Environment (HIPE) naive mapmaker and the SCANAMOR-

PHOUS software package respectively. Spitzer IRAC data of NGC 3938 was acquired

from the Spitzer Survey of Stellar Structure in Galaxies (S4G; Sheth et al. 2010) sur-

vey and MIPS observations used observations from the Spitzer Legacy/Exploration

Science Programs (SEIP). Finally, the WISE data was obtained from the ALLWISE

data release Image Atlas (Cutri et al. 2021).

The PACS 100 µm and 160 µm bands are used as opposed to the Spitzer MIPS

alternatives to make use of the superior resolution offered by PACS. While maps are

provided in units of Jy/pixel, pixel sizes vary between the bands. I use the Python

package reproject which provides a flux-conserving regridding algorithm to align

images onto a common pixel grid using their associated WCS information. A pixel

size of 7′′ was chosen as a trade-off between the incorporation of information from the

higher resolution bands and the level of regularization needed to prevent overfitting.

The maps were then converted into units of MJy/Sr.

Uncertainty images are also provided by the DustPedia database for some bands

(Clark et al. 2018), but are not available for the Spitzer IRAC 3.6 µm and 4.5 µm or

any WISE bands. Therefore, to estimate uncertainties in a consistent way across all

images, I fit the pixel histograms to a Gaussian function and use the derived standard

deviation from the fit as the map uncertainty. The values are verified against blank-

sky aperture estimates which are found to be in good agreement with one another.

An example of the fit to the SPIRE 500 µm image is shown in Figure 5.16.

I also obtained aperture photometry available from the DustPedia database. For

NGC 3938, an elliptical aperture with semi-major axis and semi-minor axes of 272′′

and 241′′ was used to determine the source flux. Uncertainties for the aperture pho-

tometry are also included and are derived from an iterative algorithm using a series

of random apertures to estimate the map standard deviation. This procedure and the

instrument calibration uncertainties are described in Clark et al. 2018 and included
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Figure 5.16. Example of the statistical uncertainty estimation method for the
NGC3938 Herschel SPIRE 500 µm band. The blue curve is the histogram of pixel
values in the map. The orange curve is a Gaussian fit to the pixels around the peak.
The standard deviation of the fitted Gaussian is used for the map uncertainty.
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in the uncertainty estimates on the aperture photometry and are between 2.9% and

7%.

I use the PSFs provided in Aniano et al. 2011 to dilute the model images to the

instrumental resolution. These PSFs incorporate realistic characteristics including

distortions and asymmetries and are aligned onto a common pixel grid. I re-grid each

PSF from its original pixel size of 1′′ to 7′′ in the same manner as the source maps. I

normalize the PSFs such that the sum of all pixels is unity.

Bandpasses were acquired from the database provided by the Spanish Virtual

Observatory’s Filter Profile Service (Rodrigo and Solano 2020). The native filters

were downsampled in frequency space by a factor of 10 to improve reduction speed

while preserving the bandpass shape.

5.9.2.1 Aperture Photometry

The result of fits to the DustPedia aperture photometry measurements with WISE,

Spitzer, and Hershel is illustrated in Figure 5.17. As this is a measurement from a

single source, the hierarchical Bayesian model is not used. The fit with the Astrodust

+ PAH model included all bands from the three instruments. A stellar contribution

was included in the physical dust model fit to account for the NIR SED bump.

The sampler was run for 105 samples, with convergence being reached within 2×103

samples for all models as determined via a visual inspection and autocorrelation tests.
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Figure 5.17. SED fits to the DustPedia integrated fluxes values of NGC 3938. The
green curve is a fit of the Herschel PACS and SPIRE bands to a Modified Blackbody
dust model. The blue curve is a fit to all Herschel and Spitzer bands to the Astrodust
+ PAH physical dust model. The red line is the stellar contribution and the purple
line is the sum of the Astrodust+PAH fit and the stellar fit. The width of the fitted
SEDs are derived from generating models from randomly selecting samples in the
MCMC parameter chains after they have converged.

The MBB model the best fit values are given in Table 5.3. Using the distance of

19.4 Mpc from the DustPedia database, the derived dust mass is 3.58× 107 ± 8.18×

106 M⊙ which is in agreement with the reported DustPedia value of 3.07 × 107 ±

2.76 × 106 M⊙. The dust temperature is also consistent with the reported value of

21.991±0.634 K. I also try fitting with a β fixed to 1.79 to test the robustness of the

free β solution and derive Mdust = 4.40× 107± 3.2× 106 M⊙ and T = 22.05± 0.45K.
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Table 5.3. Best Fit Values for the MBB Model Parameters.

Parameter Value
log(Σdust) [g/cm2] −10.63± 0.11
T [K] 22.29± 1.28
β 1.75± 0.18

For the Astrodust + PAH model fit, α was fixed to a value of 2.0 to improve

convergence of the MCMC chain. The best fit values for the dust parameters are

given in Table 5.4. The dust mass derived from log(Σdust) is Mdust = 3.28 × 107 ±

2.51 × 106 M⊙. The DustPedia CIGALE fits (analysis described in Nersesian et al.

2019) finds Mdust = 2.746× 107± 3.494× 106 M⊙ and Mdust = 7.676× 107± 7.566×

106 M⊙ when using the THEMIS and the Draine et al. 2014 dust models respectively.

The former is in good agreement with the results derived here, while the latter is

2.3 times higher. Integrated flux measurements of NGC 3938 have also been fit to

the Draine and Li 2007 dust model by Draine et al. 2007 (Mdust = 4.90 × 107 M⊙)

and by Aniano et al. 2020 (Mdust = 5.20 × 107 ± 1.40 × 107 M⊙). Variations in the

dust masses originate primarily from differences in the FIR opacities and choice of

dust-to-gas ratios. The THEMIS opacity at 160 µm is slightly higher with a value

of 14.2 cm2/g (Galliano 2018) and the Draine et al. 2007 model uses 10.2 cm2/g. A

systematic comparison of dust model parameters including the dust mass between

several dust models was carried out by Chastenet et al. 2021 in a spatially resolved

study of the face-on spiral Messier 101. Chastenet et al. 2021 found that the dust

masses obtained by using THEMIS and Astrodust models were very similar, whereas

dust masses from the Draine et al. 2007 model were ∼ 1.3 times higher than either

model, which is consistent with the trend observed here.

The inferred PAH mass fraction is consistent with Draine et al. 2007 (0.046), but

higher than the inferred value from the CIGALE DL14 model (0.028).
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Table 5.4. Best Fit Values for the Astrodust + PAH Model Parameters.

Parameter Value
log(Σdust) [g/cm2] −10.70± 0.03
α (fixed) 2.00
log(U−) −0.15± 0.05
log(U∆) 3.16± 0.03
qPAH 0.035± 0.003

5.9.2.2 Spatially Resolved STMBB Fit

I fit each pixel using both Herschel PACS and SPIRE images to an STMBB

using the full hierarchical model and instrumental PSFs. The PACS 70 µm band

was excluded to ensure no contributions from small grains that are not in thermal

equilibrium with the ISM. Multiple image sizes were considered, ranging between

21×21 pixels and 61×61 pixels, each with 7′′ pixels, to test the effect of non-source

background pixels on the values and distribution of the parameters. The 61×61 flux

maps are plotted in Figure 5.18. The image pixel sizes and regularization parameter σp

were determined empirically based on a trade-off between the observed pixel-to-pixel

noise and the resolution of the dataset. Values between 0.01 to 1.0 were explored for

all parameters. For each case, the sampler was run for 2×104 samples, and parameter

maps were derived from the median values of the final 103 samples. Fits without the

hierarchical model were also carried out for comparison using the same configuration.

The parameter maps derived from the fit to a 61×61 image are shown in Figure

5.19. The angular size of the maps, approximately 427′′, corresponds to the size of

the aperture used in the integrated photometry fits in Section 5.9.2.1 and includes a

large fraction of background pixels. Qualitatively, the hierarchical model fit recovers

much of the spiral structure and central bulge at a resolution higher than what would

be obtained if all images were smoothed to the 36′′ resolution of the SPIRE 500

µm band. The ranges for the parameters on the source in the hierarchical model

are approximately log(Σdust) = [−5,−3.9], T = [12.5, 22.6], and β = [1.8, 2.7]. For

the non-hierarchical case, log(Σdust) and T cover a similar range, but β reaches a
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Figure 5.18. Herschel PACS and SPIRE flux maps of NGC 3938 from the 61×61
test case. The raw maps have been regridded onto the same pixel grid with a pixel
size of 7′′.

lower limit of 1.3 in the outer spiral arms. There is clear evidence of a strong anti-

correlation between T and β in the hierarchical fit, with a marked enhancement of β

and reduction in T within the central bulge. The effect is not as evident in the non-

hierarchical fit, with the low β region in the outer arms not showing an increase in T

compared to other parts of the galaxy. The value of β is elevated in the background

pixels relative to that of the galaxy, which likely derives from the differences in the

noise level between the bands.

Residual maps for the 61×61 image fits are shown in Figure 5.20 and Figure

5.21, with average map residuals being between 3-7% for the hierarchical fit and 3-

6% for the non-hierarchical fit, respectively. There is little difference in the residuals

between the two models, but some spiral structure is visible, particularly in the higher-

resolution bands, though most of the spiral structure is smoothed out in the SPIRE

350 µm and 500 µm bands such that the residuals should appear smoother.
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Figure 5.19. log(Σdust), T , and β maps from hierarchical (left column) and non-
hierarchical (right column) fits to the unmasked 61×61 maps of NGC 3938. Values
used for each pixel are the median of the final 103 samples of each parameter.
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Figure 5.20. Residuals of the hierarchical fit to the unmasked 61×61 map of NGC
3938. Residuals are approximately at the 3-7% level.

Figure 5.21. Same as Figure 5.20, but for the non-hierarchical case. Residuals are
approximately 3-6% of the map fluxes.
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Figure 5.22 shows the posterior and joint posterior distributions for every pixel for

the hierarchical and non-hierarchical cases. All posteriors show signs of bimodality,

which is expected due to the background pixels. The sharp lower limits on log(Σdust)

and T and the upper limit on β in the hierarchical posteriors are not due to prior limits

but are the result of the narrow distribution of the background. Overall, the hierar-

chical posteriors are more constrained, recovering a systematically higher log(Σdust)

value and narrower ranges for T and β. There are strong correlations among the

hierarchical model parameters. The correlation coefficients derived from the hyper-

parameters are (ρlog(Σdust),ln(T ), ρlog(Σdust),β, ρln(T ),β) = (0.98, -0.97, -0.95), implying

the parameters are almost completely correlated. However, these correlations are not

physical and instead are indicative of what is derived when fitting an image with

constant log(Σdust), T , and β values. The more numerous background pixels, which

show up as the long tails characterized by little scatter in the joint posterior plots,

largely override any intrinsic physical correlations that may exist and introduce this

unphysical relationship. This effect is amplified by the inclusion of regularization

in the fitting routine, which enforces a smoother parameter distribution, with the

likelihoods of source pixels being influenced by adjacent off-source pixels.

The non-hierarchical joint posterior scatter plots show considerably more scatter

relative to the hierarchical fit, somewhat obscuring any correlations. The positive

log(Σdust)-T correlation of the hierarchical fit is reproduced, and an anti-correlation

in T -β is also visible. Without the hyperparameters, these will not be subject to

the same background-induced correlation as the hierarchical result, which implies

that the log(Σdust)-T correlation may be real or induced by the fitting methodology.

The negative T -β relationship is the noise-induced anti-correlation typical of non-

hierarchical MBB fits.

The fits are repeated for a smaller 31×31 image centered on the same region to

reduce the number of background pixels. The parameter maps are shown in Fig-
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Figure 5.22. Both individual and joint posterior plots from the hierarchical (blue
points) and non-hierarchical (orange points) MBB fits of the unmasked 61×61 maps
of NGC 3938.
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ure 5.23. Residuals are again on the order of 6% and 5% for both fits, respectively.

Compared to the 61×61 image fit, the hierarchical and non-hierarchical fits are more

similar due to the restriction to higher S/N pixels, with the largest deviations occur-

ring near the edges of the galaxy. Most pixels have S/N > 50 across all bands. The

strong anti-correlation near the center is now also reduced.

Figure 5.23. log(Σdust), T , and β maps from hierarchical (left column) and non-
hierarchical (right column) fits to the unmasked 31×31 maps of NGC 3938. Values
used for each pixel are the median of the final 103 samples of each parameter.
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The increased similarity in the parameter maps is mirrored in the posterior distri-

butions as illustrated in Figure 5.24. There is little to no bimodality observed in the

posterior distributions, and the two fitting cases have similar shapes and mean val-

ues. The β distribution shows the most significant difference between the hierarchical

and non-hierarchical fitting methods, with the latter being more evenly distributed

over its range. There is reduced scatter in the hierarchical T and β posteriors, with

most of the reduction in the T distribution. The correlations among the param-

eters are significantly different from those of the 61×61 image for the hierarchical

model. The correlation coefficients are (ρlog(Σdust),ln(T ), ρlog(Σdust),β, ρln(T ),β) = (0.67,

0.68, 0.77). There is some reduced scatter towards lower log(Σdust) originating from

the remaining low S/N pixels in the maps.

Determining whether the correlations are indeed intrinsic and physically mean-

ingful is challenging. Nearly identical correlations are derived for an even smaller

21×21 image consisting of the brightest pixels only. At the resolutions of the Her-

schel bands, each pixel will contain a range of physical conditions, particularly for

the non-diffuse ISM regions, and will not be characterized by a single dust temper-

ature. The positive T -β correlation is not due to the mathematical degeneracy of

T and β, which would introduce a negative relationship. Furthermore, it is unlikely

to be the result of excessive smoothing from the Bayesian regularization procedure,

which has a similar effect to the inclusion of background pixels and will, therefore,

also result in an anti-correlation. The non-hierarchical T -β distribution is mostly

flat but characterized by a large amount of scatter. The pixels below T=17.5 K and

β=2 are near the edge of the map where some background remains and do not im-

ply a positive correlation in conjunction with the rest of the points. As discussed in

Section 5, grain growth in dense environments can result in a negative correlation

between log(Σdust)-β and a positive one for T -β. The hierarchical fits results are in

agreement with this model, but a positive log(Σdust)-β relation is recovered contrary

210



Figure 5.24. One-dimensional and joint posterior plots from the hierarchical (blue
points) and non-hierarchical (orange points) MBB fits of the unmasked 61×61 maps
of NGC 3938.
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to what is expected. However, a negative T -β relation has also been predicted based

on laboratory analogs and dust models involving mantle accretion. The negative T -β

correlation found from the resolved study of the CMZ in Tang et al. 2021 that uses

the same forward fitting and hierarchical Bayesian model implies that the result here

may not be strictly model-dependent, and may at least partially reflect the source

properties and data characteristics. Tang et al. 2021 also reported an increase of β in

dense environments, but an anti-correlation between Σdust and T . However, the CMZ

is resolved at a much higher resolution and will not suffer from resolution-dependent

effects and the mixing of physical conditions to the same level as a distant galaxy.

In Figure 5.26, the 61×61 map is re-fit but with a pixel mask (Figure 5.25) ap-

plied to the pixels, which determines which pixels are used in the hyperparameter

and hyperprior calculation. The non-hierarchical fit is not shown as it is identical

to that of Figure 5.19 due to its lack of hyperparameters. A modest S/N value of 3

was selected for the lower limit, with only pixels above this threshold being utilized

in the hyperparameter MCMC sampling. Two cases were considered, one with the

calculated hyperparameter probabilities still applied to the posterior of the masked

pixels and one where they were not. The former can lead to discontinuities at the

boundary of the mask due to the Bayesian regularization, which will smooth the pa-

rameters on either side of the mask. A more robust smoothing algorithm is required

to account for this. The resulting parameter maps of either case are similar to those

of the 31×31 case, particularly for β, where the anti-correlation in the bulge of the

unmasked 61×61 map is not present. There are some deviations between the two

masking approaches with the T and β in edge pixels in the case where the hyperpa-

rameters are not applied to the masked regions being lower than in the other case.

Figure 5.27 shows the posterior and joint posterior plots for the unmasked pixels for

each case. The distributions and correlations of the masked pixels are nearly identical

for both cases but are slightly different from the 31×31 image with correlation coef-
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ficients of (ρlog(Σdust),ln(T ), ρlog(Σdust),β, ρln(T ),β) = (0.51, 0.70, 0.57) and (ρlog(Σdust),ln(T ),

ρlog(Σdust),β, ρln(T ),β) = (0.56, 0.70, 0.60) for the included and excluded masked pixel

cases, respectively.

Figure 5.25. Pixel mask for deciding which pixels are entered into the hyperprior
calculation. The S/N cutoff value was 3.
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Figure 5.26. log(Σdust), T , and β maps from hierarchical fits to the masked 61×61
maps of NGC 3938, where masked background pixels are not used in the hyperpa-
rameter sampling. Values used for each pixel are the median of the final 103 samples
of each parameter. The left column shows maps where the hyperparameter prob-
abilities were also applied to the background pixel posteriors. The right column is
the case where the background pixel posteriors were sampled independently of the
hyperparameters.
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Figure 5.27. Posterior distributions for masked 61×61 fit. The blue (hyperprior
applied to background pixels) and orange (hyperprior not applied to background
pixels) points correspond to the left and right columns of Figure 5.26 respectively.
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CHAPTER 6

CONCLUSION

TolTEC is a millimeter-wavelength imaging polarimeter currently installed on the

50-meter Large Millimeter Telescope that maps the sky simultaneously at 1.1, 1.4,

and 2.0 mm (273, 214, and 150 GHz) with 7,718 dual-polarization Kinetic Inductance

Detectors. It achieves diffraction-limited beamsizes between 5′′ and 10′′ with a full

field of view of 4′ in diameter. It will explore a wide variety of astrophysical phe-

nomena, including galaxy clusters, high redshift luminous infrared galaxies, galactic

star-forming molecular clouds, and interstellar dust (Chapter 1). The camera, tele-

scope, and observing strategies were outlined in Chapter 2.

The primary result of my work related to the TolTEC project is Citlali the

camera’s end-to-end data reduction and mapmaking pipeline, which is described in

Chapter 3. The main points of Citlali can be summarized as follows:

• It has been developed as an open-source, high-performance software framework

written entirely in C++ to maximize performance on memory- and CPU-limited

workstations.

• It uses a parallelized data streaming model to reduce the pipeline’s overall

memory footprint and to enable near real-time reduction of the data and is

therefore scalable to take advantage of resources offered by high-performance

computing clusters.

• Citlali transforms the raw time-ordered data into maps of the sky for all

categories of TolTEC observations (beammapping, focus, astigmatism, pointing,

and science) using a single highly configurable workflow.
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• A range of timestream reduction algorithms have been implemented, including

cosmic ray despiking, timestream filtering, and a principal component analysis-

based atmospheric removal routine.

• Two built-in mapmaking algorithms are implemented: a fast naive mapmaker

for quick-look data products and a more computationally expensive jinc filtered

mapmaker optimized for removing high-frequency pixel-pixel noise within the

maps. An iterative mapmaking routine to recover flux lost during atmospheric

filtering has also been implemented.

• The pipeline can write partially reduced, flux-calibrated timestreams to disk

to be used as inputs into standalone maximum likelihood mapmakers, such as

TOAST3 and Minkasi.

Development of Citlali continues in parallel with the commissioning of the

TolTEC camera. The inclusion of the half-wave plate signal to generate Stokes Q

and U maps, improvements and further characterization of the iterative mapmaker,

and additional map filtering routines are in active development. A built-in maxi-

mum likelihood mapmaker is also being implemented, which will be able to leverage

C++ and Eigen to carry out the computationally expensive preconditioned conjugate

gradient solution. Distributed parallelization over different computational nodes and

GPU-based FFT calculations are being investigated.

As of the date of this writing, TolTEC has undergone two commissioning phases

in 2022 and has resumed operations in March 2024. Chapter 4 presented preliminary

maps and analyses of the on-sky data acquired in 2022 using both Citlali and

Minkasi, including beam mapping observations of the radio quasar J1159+292 as

well as maps of extended emission from the Crab Nebula and the Monoceros R2

Giant Molecular Cloud. Key takeaways include:
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• On-sky detector positions, beam sizes, and flux calibration factors were derived

from the beam map observation of J1159+292. Optical alignment of the 3

detector arrays was confirmed, and minimal radial dependence of per-detector

characteristics was found.

• The ability to recover bright extended emission from the Crab Nebula and

MonR2 with Citlali’s iterative Jinc mapmaker was demonstrated, with pre-

liminary integrated flux measurements from the Crab Nebula being in good

agreement with values from the literature. Maps from Citlali and Minkasi

were compared, with maps produced by Minkasi being found to exhibit regions

of negative flux surrounding the bright source. Citlali recovers more flux than

Minkasi for the Crab Nebula but slightly underpredicts the flux of the bright

regions of MonR2 relative to Minkasi.

• Preliminary Stokes Q and U maps were presented from observations of the Crab

Nebula without the TolTEC half-wave plate installed. While polarization frac-

tions were not derived, the morphology of the maps is consistent with existing

NIKA 150 GHz maps.

The dust content of nearby galaxies will be mapped through observations with

TolTEC. Commissioning observations of the star-forming spirals NGC 3938, NGC

4736, and M74 and the starburst irregular dwarf galaxies NGC 4449 and IC10 are

currently planned. Chapter 5 introduced the hierarchical Bayesian MCMC fitting

code I wrote to fit dust SEDs to modified blackbody and physically motivated dust

models within each pixel of maps of local galaxies. Results from this chapter encom-

pass:

• Simulated dust SEDs with varying noise levels were fit to single temperature

modified blackbodies and the Astrodust+PAH dust model (Hensley and Draine

2023) using both a hierarchical and non-hierarchical model. The hierarchical
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fit recovers the intrinsic correlations among the input dust parameters and is

characterized by reduced scatter and bias. The addition of observations at the

TolTEC wavelengths to modified blackbody fits of simulated Herschel observa-

tions improves the recovery of the dust spectral emissivity index β.

• Integrated WISE, Spitzer and Herschel flux measurements from the DustPedia

database of the face-on spiral galaxy NGC 3938 were fit to both dust models to

test the fitting code on real data. The fitted dust mass and temperature are in

agreement with values from the literature for modified blackbodies, THEMIS,

Draine and Li 2007, and the updated Draine et al. 2014 dust models.

• A preliminary spatially resolved fit of Herschel PACS and SPIRE images of

NGC 3938 to a single-temperature MBB model while also incorporating each

band’s resolution information was performed. Maps of Σdust, T , and β were

presented, and the impact of background pixels on the correlations among dust

parameters was investigated. A positive correlation among all dust parameters

was identified in the fits using the hierarchical Bayesian model after background

subtraction. The physical interpretation of these correlations remains uncertain.

Expanded testing with simulated observations and realistic models of galaxies

is required to fully explore the consequences of the choice of common pixel

size, wavelength coverage, Bayesian regularization, and PSF inclusion on the

recovered correlations.

• Additional work involving the hierarchical Bayesian fitting code is underway,

including a spatially resolved fit of NGC 3938 to the Astrodust+PAH dust

model, as well as a modified blackbody fit to SOFIA HAWC+, Herschel and

TolTEC observations of the Monoceros R2 Giant Molecular Cloud. Further

investigations of the ability to discern the signatures of the Sunyaev-Zeldovich

effect and foreground dusty star-forming galaxies are also being conducted.
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Rémy-Ruyer, A. et al. (Oct. 2015). “Linking dust emission to fundamental prop-
erties in galaxies: the low-metallicity picture”. In: Astronomy and Astrophysics
582, A121, A121. doi: 10.1051/0004- 6361/201526067. arXiv: 1507.05432

[astro-ph.GA]. url: https://ui.adsabs.harvard.edu/abs/2015A%5C&A...
582A.121R.

Rew, R. and G. Davis (1990). “NetCDF: An Interface for Scientific Data Access”.
In: IEEE Computer Graphics and Applications 10.4, pp. 76–82. doi: 10.xxxxx/
yyyyy.

245



Rio Astorga, David del et al. (May 2017). “A generic parallel pattern interface for
stream and data processing”. In: Concurrency and Computation: Practice and
Experience 29.24. issn: 1532-0634. doi: 10.1002/cpe.4175.

Ritacco, A. et al. (Aug. 2018). “NIKA 150 GHz polarization observations of the
Crab nebula and its spectral energy distribution”. In: Astronomy and Astro-
physics 616, A35, A35. doi: 10.1051/0004-6361/201731551. arXiv: 1804.09581
[astro-ph.CO]. url: https://ui.adsabs.harvard.edu/abs/2018A&A...

616A..35R.

Ritacco, A. et al. (July 2022). “Crab nebula at 260 GHz with the NIKA2 polarimeter:
Implications for the polarization angle calibration of future CMB experiments”.
In: mm Universe @ NIKA2 - Observing the mm Universe with the NIKA2 Camera.
Vol. 257. European Physical Journal Web of Conferences, 00042, p. 00042. doi:
10 . 1051 / epjconf / 202225700042. arXiv: 2111 . 02143 [astro-ph.CO]. url:
https://ui.adsabs.harvard.edu/abs/2022EPJWC.25700042R.

Rodrigo, C. and E. Solano (July 2020). “The SVO Filter Profile Service”. In: XIV.0
Scientific Meeting (virtual) of the Spanish Astronomical Society, 182, p. 182. url:
https://ui.adsabs.harvard.edu/abs/2020sea..confE.182R.

Romero, Charles E. et al. (Mar. 2020). “Pressure Profiles and Mass Estimates Us-
ing High-resolution Sunyaev-Zel’dovich Effect Observations of Zwicky 3146 with
MUSTANG-2”. In: Astrophysical Journal 891.1, 90, p. 90. doi: 10.3847/1538-
4357/ab6d70. arXiv: 1908.09200 [astro-ph.CO]. url: https://ui.adsabs.
harvard.edu/abs/2020ApJ...891...90R.

Rowlands, K. et al. (June 2014). “The dust budget crisis in high-redshift submillimetre
galaxies”. In: Monthly Notices of the Royal Astronomical Society 441.2, pp. 1040–
1058. doi: 10.1093/mnras/stu605. arXiv: 1403.2995 [astro-ph.GA]. url:
https://ui.adsabs.harvard.edu/abs/2014MNRAS.441.1040R.
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